Understanding Support Vector Machines with Polynomial Kernels

被引:9
|
作者
Vinge, Rikard [1 ]
McKelvey, Tomas [1 ]
机构
[1] Chalmers Univ Technol, Dept Elect Engn, Gothenburg, Sweden
关键词
Interpretation; Support Vector Machine; Polynomial Kernel; Statistical Moments; Likelihood Ratio Test; Quadratic Discrimination;
D O I
10.23919/eusipco.2019.8903042
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Interpreting models learned by a support vector machine (SVM) is often difficult, if not impossible, due to working in high-dimensional spaces. In this paper, we present an investigation into polynomial kernels for the SVM. We show that the models learned by these machines are constructed from terms related to the statistical moments of the support vectors. This allows us to deepen our understanding of the internal workings of these models and, for example, gauge the importance of combinations of features. We also discuss how the SVM with a quadratic kernel is related to the likelihood-ratio test for normally distributed populations.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] A Note on Support Vector Machines with Polynomial Kernels
    Tong, Hongzhi
    NEURAL COMPUTATION, 2016, 28 (01) : 71 - 88
  • [2] Learning Kernels for Support Vector Machines with Polynomial Powers of Sigmoid
    Fernandes, Silas E. N.
    Pilastri, Andre Luiz
    Pereira, Luis A. M.
    Pires, Rafael G.
    Papa, Joao P.
    2014 27TH SIBGRAPI CONFERENCE ON GRAPHICS, PATTERNS AND IMAGES (SIBGRAPI), 2014, : 259 - 265
  • [3] On the fusion of polynomial kernels for support vector classifiers
    Martin de Diego, Isaac
    Moguerza, Javier M.
    Munoz, Alberto
    INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING - IDEAL 2006, PROCEEDINGS, 2006, 4224 : 330 - 337
  • [4] Tangent distance kernels for support vector machines
    Haasdonk, B
    Keysers, D
    16TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL II, PROCEEDINGS, 2002, : 864 - 868
  • [5] SUPPORT VECTOR MACHINES (SVMs) WITH UNIVERSAL KERNELS
    Zanaty, E. A.
    Afifi, Ashraf
    APPLIED ARTIFICIAL INTELLIGENCE, 2011, 25 (07) : 575 - 589
  • [6] Heuristics for kernels adaptation in support vector machines
    Saavedra, E
    Renners, I
    Grauel, A
    Morton, D
    Convey, HJ
    APPLICATIONS AND SCIENCE IN SOFT COMPUTING, 2004, : 249 - 254
  • [7] Axiomatic Kernels on Graphs for Support Vector Machines
    Orchel, Marcin
    Suykens, Johan A. K.
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2019: WORKSHOP AND SPECIAL SESSIONS, 2019, 11731 : 685 - 700
  • [8] Support Vector Machines and Kernels for Computational Biology
    Ben-Hur, Asa
    Ong, Cheng Soon
    Sonnenburg, Soeren
    Schoelkopf, Bernhard
    Raetsch, Gunnar
    PLOS COMPUTATIONAL BIOLOGY, 2008, 4 (10)
  • [9] Training of support vector machines with mahalanobis kernels
    Abe, SG
    ARTIFICIAL NEURAL NETWORKS: FORMAL MODELS AND THEIR APPLICATIONS - ICANN 2005, PT 2, PROCEEDINGS, 2005, 3697 : 571 - 576
  • [10] Fast Support Vector Machines for Structural Kernels
    Severyn, Aliaksei
    Moschitti, Alessandro
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, PT III, 2011, 6913 : 175 - 190