Normal zone propagation in high-current density Nb3Sn conductors for accelerator magnets

被引:11
|
作者
den Ouden, A
van Weeren, H
Wessel, WAJ
ten Kate, HHJ
Kirby, GA
Siegel, N
Taylor, T
机构
[1] Univ Twente, NL-7500 AE Enschede, Netherlands
[2] CERN, CH-1211 Geneva 23, Switzerland
关键词
accelerator magnet; Nb3Sn superconductor; normal zone propagation; Rutherford cable;
D O I
10.1109/TASC.2004.829082
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Self-absorbing quench protection schemes for accelerator magnets mainly rely on longitudinal and turn-to-turn normal zone propagation (NZP) immediately after the occurrence of a quench and subsequently on the effectiveness of protection heaters. Especially for impregnated Nb-3 Sn coils the protection should not only aim at limitation of the hot spot temperature and internal voltages but also at avoidance of large temperature gradients and local stress accumulation. Considering Rutherford types of cable based on present high current density Nb-3 Sn wires with a relatively low stabilizer content, a priori knowledge about their NZP properties is mandatory. Especially the medium and low-field properties appear to be critical for coil protection. The longitudinal NZP velocity of PIT-type Nb-3 Sn conductors are investigated both experimentally and numerically in nearly adiabatic conditions typical for impregnated coils. Numerical simulations are extended to extremely high current density Nb-3 Sn conductors and protection heater performance.
引用
收藏
页码:279 / 282
页数:4
相关论文
共 50 条
  • [1] Limits of Nb3Sn accelerator magnets
    Caspi, S
    Ferracin, P
    2005 IEEE PARTICLE ACCELERATOR CONFERENCE (PAC), VOLS 1-4, 2005, : 2457 - 2461
  • [2] Perspectives of Nb3Sn in future accelerator magnets
    Limon, Peter J.
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2006, 16 (02) : 305 - 310
  • [3] Development of High-current Distributed-tin Nb3Sn Wire for Superconducting Magnets
    Kawashima, Shinya
    R and D: Research and Development Kobe Steel Engineering Reports, 2022, 71 (02): : 59 - 63
  • [4] Passive correction of the persistent current effect in Nb3Sn accelerator magnets
    Kashikhim, VV
    Barzi, E
    Chichili, D
    DiMarco, J
    Lamm, M
    Schlabach, P
    Zlobin, AV
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2003, 13 (02) : 1270 - 1273
  • [5] IC axial strain dependence of high current density Nb3Sn conductors
    Lu, Jun
    Han, Ke
    Walsh, Robert P.
    Miller, John R.
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2007, 17 (02) : 2639 - 2642
  • [6] Quench modeling in high-field Nb3Sn accelerator magnets
    Bermudez, S. Izquierdo
    Bajas, H.
    Bottura, L.
    PROCEEDINGS OF THE 25TH INTERNATIONAL CRYOGENIC ENGINEERING CONFERENCE AND INTERNATIONAL CRYOGENIC MATERIALS CONFERENCE 2014, 2015, 67 : 840 - 846
  • [7] Critical Current and Stability of High-Jc Nb3Sn Rutherford Cables for Accelerator Magnets
    de Rapper, W. M.
    Oberli, L. R.
    Bordini, B.
    Takala, E.
    ten Kate, H. H. J.
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2011, 21 (03) : 2359 - 2362
  • [8] PROPERTIES AND PERFORMANCE OF HIGH-CURRENT DENSITY SN-CORE PROCESS MF NB3SN
    SCHWALL, RE
    OZERYANSKY, GM
    HAZELTON, DW
    COGAN, SF
    ROSE, RM
    IEEE TRANSACTIONS ON MAGNETICS, 1983, 19 (03) : 1135 - 1138
  • [9] Application of Nb3Sn superconductors in high-field accelerator magnets
    den Ouden, Andries
    Wessel, Sander
    Krooshoop, Erik
    ten Kate, Herman
    IEEE Transactions on Applied Superconductivity, 1997, 7 (2 pt 1): : 733 - 738
  • [10] Critical current and instability threshold measurement of Nb3Sn cables for high field accelerator magnets
    Ambrosio, G
    Andreev, N
    Bartlett, SE
    Barzi, E
    Denarie, CH
    Dietderich, D
    Ghosh, AK
    Verweij, AP
    Zlobin, AV
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2005, 15 (02) : 1545 - 1549