LONG-TIME ASYMPTOTICS FOR THE DEGASPERIS-PROCESI EQUATION ON THE HALF-LINE

被引:0
|
作者
De Monvel, Anne Boutet [1 ]
Lenells, Jonatan [2 ]
Shepelsky, Dmitry [3 ,4 ]
机构
[1] Univ Paris Diderot, Inst Math Jussieu PRG, F-75205 Paris 13, France
[2] KTH Royal Inst Technol, Dept Math, S-10044 Stockholm, Sweden
[3] Inst Low Temp Phys, Math Div, UA-61103 Kharkov, Ukraine
[4] Kharkov Natl Univ, Sch Math & Comp Sci, UA-61022 Kharkov, Ukraine
基金
瑞典研究理事会; 欧洲研究理事会; 英国工程与自然科学研究理事会;
关键词
Degasperis-Procesi equation; long-time asymptotics; Riemann-Hilbert problem; boundary value problem; RIEMANN-HILBERT PROBLEMS; STEEPEST DESCENT METHOD; BEHAVIOR;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We analyze the long-time asymptotics for the Degasperis- Procesi equation on the half-line. By applying nonlinear steepest descent techniques to an associated 3 x 3-matrix valued Riemann-Hilbert problem, we find an explicit formula for the leading order asymptotics of the solution in the similarity region in terms of the initial and boundary values.
引用
收藏
页码:171 / 230
页数:60
相关论文
共 50 条