On weak convergence of sampled dynamical systems

被引:0
|
作者
Guillotin-Plantard, N [1 ]
机构
[1] Univ Lyon 1, LaPCS, F-69366 Lyon 07, France
关键词
D O I
10.5802/aif.2016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let T-alpha be a rotation on the circle by an irrational angle alpha, let (S-k)(kgreater than or equal to0) be a transient Z-random walk. Let f is an element of L-2(mu) and H is an element of ]0, 1[, we study the weak convergence of the sequence (1)/(H)n(H) Sigma(k=0)([nt]-1) f o T-alpha(Sk), n greater than or equal to 1.
引用
收藏
页码:211 / +
页数:24
相关论文
共 50 条
  • [1] On weak convergence of sampled dynamical systems
    Guillotin-Plantard, N
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 333 (06): : 583 - 588
  • [2] Weak convergence of dynamical systems in two timescales
    Basak, Gopal K.
    Dasgupta, Amites
    SYSTEMS & CONTROL LETTERS, 2020, 142
  • [3] Weak convergence of dynamical systems in two timescales
    Basak, Gopal K.
    Dasgupta, Amites
    Systems and Control Letters, 2020, 142
  • [4] WEAK CONVERGENCE TO LEVY STABLE PROCESSES IN DYNAMICAL SYSTEMS
    Tyran-Kaminska, Marta
    STOCHASTICS AND DYNAMICS, 2010, 10 (02) : 263 - 289
  • [5] STOCHASTIC PERTURBATION OF DYNAMICAL-SYSTEMS - THE WEAK-CONVERGENCE OF MEASURES
    LASOTA, A
    MACKEY, MC
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1989, 138 (01) : 232 - 248
  • [6] Weak convergence to stable Levy processes for nonuniformly hyperbolic dynamical systems
    Melbourne, Ian
    Zweimueller, Roland
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2015, 51 (02): : 545 - 556
  • [7] ON THE STRUCTURE OF THE GLOBAL ATTRACTOR FOR NON-AUTONOMOUS DYNAMICAL SYSTEMS WITH WEAK CONVERGENCE
    Caraballo, Tomas
    Cheban, David
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2012, 11 (02) : 809 - 828
  • [8] On the convergence of sampled data nonlinear systems
    Astuti, P
    Corless, M
    Williamson, D
    DIFFERENTIAL EQUATIONS: THEORY, NUMERICS AND APPLICATIONS, 1997, : 201 - 210
  • [9] WEAK-CONVERGENCE OF MEASURES AND DYNAMICAL-SYSTEMS ON NON-COMPACT SPACES
    CHERSI, F
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1988, 2A (01): : 109 - 117
  • [10] Convergence of Delayed Dynamical Systems
    Tianping Chen
    Neural Processing Letters, 1999, 10 : 267 - 271