A STABLE SECOND ORDER OF ACCURACY DIFFERENCE SCHEME FOR A FRACTIONAL SCHRODINGER DIFFERENTIAL EQUATION

被引:0
|
作者
Ashyralyev, A. [1 ,2 ,3 ]
Hicdurmaz, B. [4 ]
机构
[1] Near East Univ, Dept Math, Mersin 10, Nicosia, Turkey
[2] Peoples Friendship Univ Russia, Ul Miklukho Maklaya 6, Moscow 117198, Russia
[3] Inst Math & Math Modeling, Alma Ata 050010, Kazakhstan
[4] Istanbul Medeniyet Univ, Fac Engn & Nat Sci, Dept Math, TR-34700 Istanbul, Turkey
关键词
Stability; Fractional Schrodinger Equation; Difference Scheme; Numerical Results; QUANTUM-MECHANICS; TIME; EXISTENCE; ORDER;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper, we present and analyze a second order of accuracy difference scheme for solving a fractional Schrodinger differential equation with the fractional derivative in the Riemann Louville sense. A stability analysis is performed on the presented difference scheme. Numerical results confirm the expected convergence rates and illustrate the effectiveness of the method.
引用
收藏
页码:10 / 21
页数:12
相关论文
共 50 条
  • [1] Stable Difference Schemes for the Fractional Schrodinger Differential Equation
    Hicdurmaz, Betul
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2012), VOLS A AND B, 2012, 1479 : 574 - 577
  • [2] Time second-order splitting conservative difference scheme for nonlinear fractional Schrodinger equation
    Xie, Jianqiang
    Ali, Muhammad Aamir
    Zhang, Zhiyue
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (01) : 1411 - 1422
  • [3] A second-order implicit difference scheme for the nonlinear time-space fractional Schrodinger equation
    Fei, Mingfa
    Wang, Nan
    Huang, Chengming
    Ma, Xiaohua
    APPLIED NUMERICAL MATHEMATICS, 2020, 153 : 399 - 411
  • [4] A Second Order of Accuracy Difference Scheme for Schrodinger Equations with an Unknown Parameter
    Ashyralyev, Allaberen
    Urun, Mesut
    FILOMAT, 2014, 28 (05) : 981 - 993
  • [5] A second order of accuracy finite difference scheme for the integral-differential equation of the hyperbolic type
    Direk, Zilal
    Ashyraliyev, Maksat
    INTERNATIONAL CONFERENCE ON ANALYSIS AND APPLIED MATHEMATICS (ICAAM 2014), 2014, 1611 : 398 - 403
  • [6] A second-order finite difference scheme for the multi-dimensional nonlinear time-fractional Schrodinger equation
    Liu, Jianfeng
    Wang, Tingchun
    Zhang, Teng
    NUMERICAL ALGORITHMS, 2023, 92 (02) : 1153 - 1182
  • [7] BOUNDED SOLUTIONS OF SECOND ORDER OF ACCURACY DIFFERENCE SCHEMES FOR SEMILINEAR FRACTIONAL SCHRODINGER EQUATIONS
    Ashyralyev, Allaberen
    Hicdurmaz, Betul
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2020, 23 (06) : 1723 - 1761
  • [8] A Stable Difference Scheme for a Third-Order Partial Differential Equation
    Ashyralyev A.
    Belakroum K.
    Journal of Mathematical Sciences, 2022, 260 (4) : 399 - 417
  • [9] A fourth-order difference scheme for the fractional nonlinear Schrodinger equation with wave operator
    Pan, Kejia
    Zeng, Jiali
    He, Dongdong
    Zhang, Saiyan
    APPLICABLE ANALYSIS, 2022, 101 (08) : 2886 - 2902
  • [10] A second-order difference scheme for the time fractional substantial diffusion equation
    Hao, Zhaopeng
    Cao, Wanrong
    Lin, Guang
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 313 : 54 - 69