Third-Order Newton-Type Methods Combined with Vector Extrapolation for Solving Nonlinear Systems

被引:0
|
作者
Zhou, Wen [1 ]
Kou, Jisheng [2 ]
机构
[1] Hubei Vocat Tech Coll, Dept Fdn Courses, Xiaogan 432000, Hubei, Peoples R China
[2] Hubei Engn Univ, Sch Math & Stat, Xiaogan 432000, Hubei, Peoples R China
关键词
RATIONAL CUBIC METHODS; RECURRENCE RELATIONS; SEMILOCAL CONVERGENCE; ACCELERATION;
D O I
10.1155/2014/601745
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a third-order method for solving the systems of nonlinear equations. This method is a Newton-type scheme with the vector extrapolation. We establish the local and semilocal convergence of this method. Numerical results show that the composite method is more robust and efficient than a number of Newton-type methods with the other vector extrapolations.
引用
收藏
页数:8
相关论文
共 50 条
  • [2] A third-order Newton-type method to solve systems of nonlinear equations
    Darvishi, M. T.
    Barati, A.
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 187 (02) : 630 - 635
  • [3] A new Newton-type method with third-order convergence
    Wang, Xiuhua
    Kou, Jisheng
    PROCEEDINGS OF THE THIRD INTERNATIONAL WORKSHOP ON APPLIED MATRIX THEORY, 2009, : 89 - 92
  • [4] Chaotic dynamics of a third-order Newton-type method
    Amat, S.
    Busquier, S.
    Plaza, S.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 366 (01) : 24 - 32
  • [5] Weighted Gaussian correction of Newton-type methods for solving nonlinear systems
    Cordero, Alicia
    Torregrosa, Juan R.
    Vassileva, Maria P.
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2016, 59 (01): : 23 - 38
  • [6] On a third-order Newton-type method free of bilinear operators
    Amat, S.
    Bermudez, C.
    Busquier, S.
    Plaza, S.
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2010, 17 (04) : 639 - 653
  • [7] A family of Newton-type methods for solving nonlinear equations
    Salkuyeh, Davod Khojasteh
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2007, 84 (03) : 411 - 419
  • [8] A family of Newton-type methods with seventh and eighth-order of convergence for solving systems of nonlinear equations
    Zhanlav, Tugal
    Mijiddorj, Renchin-Ochir
    Otgondorj, Khuder
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2023, 52 (04): : 1006 - 1021
  • [9] High-order Newton-type iterative methods with memory for solving nonlinear equations
    Wang, Xiaofeng
    Zhang, Tie
    MATHEMATICAL COMMUNICATIONS, 2014, 19 (01) : 91 - 109
  • [10] Some Novel Newton-Type Methods for Solving Nonlinear Equations
    Bisheh-Niasar, Morteza
    Saadatmandi, Abbas
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2020, 38 (03): : 111 - 123