Microarray analysis of gene expression: considerations in data mining and statistical treatment

被引:44
|
作者
Verducci, Joseph S.
Melfi, Vincent F.
Lin, Shili
Wang, Zailong
Roy, Sashwati
Sen, Chandan K.
机构
[1] Ohio State Univ, Davis Heart & Lung Res Inst 512, Dept Surg, Mol Med Lab, Columbus, OH 43210 USA
[2] Ohio State Univ, Davis Heart & Lung Res Inst 512, Dept Surg, DNA Microarray Facil, Columbus, OH 43210 USA
[3] Ohio State Univ, Dept Stat, Columbus, OH 43210 USA
[4] Ohio State Univ, Math Biosci Inst, Columbus, OH 43210 USA
[5] Michigan State Univ, Dept Stat, E Lansing, MI USA
[6] Novartis Pharmaceut, E Hanover, NJ USA
关键词
functional genomics; normalization; differential expression; false discovery rate; clustering; annotation; pathway construction;
D O I
10.1152/physiolgenomics.00314.2004
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
DNA microarray represents a powerful tool in biomedical discoveries. Harnessing the potential of this technology depends on the development and appropriate use of data mining and statistical tools. Significant current advances have made microarray data mining more versatile. Researchers are no longer limited to default choices that generate suboptimal results. Conflicting results in repeated experiments can be resolved through attention to the statistical details. In the current dynamic environment, there are many choices and potential pitfalls for researchers who intend to incorporate microarrays as a research tool. This review is intended to provide a simple framework to understand the choices and identify the pitfalls. Specifically, this review article discusses the choice of microarray platform, preprocessing raw data, differential expression and validation, clustering, annotation and functional characterization of genes, and pathway construction in light of emergent concepts and tools.
引用
收藏
页码:355 / 363
页数:9
相关论文
共 50 条
  • [2] Statistical design and the analysis of gene expression microarray data
    Kerr, MK
    Churchill, GA
    GENETICAL RESEARCH, 2001, 77 (02) : 123 - 128
  • [3] Data mining and visualisation of microarray gene expression data
    Alan Robinson
    Alvis Brazma
    Nature Genetics, 1999, 23 (Suppl 3) : 71 - 71
  • [4] Discriminatory mining of gene expression microarray data
    Wang, ZY
    Wang, Y
    Lu, JP
    Kung, SY
    Zhang, JY
    Lee, R
    Xuan, JH
    Khan, JV
    JOURNAL OF VLSI SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2003, 35 (03): : 255 - 272
  • [5] Discriminatory Mining of Gene Expression Microarray Data
    Zuyi Wang
    Yue Wang
    Jianping Lu
    Sun-Yuan Kung
    Junying Zhang
    Richard Lee
    Jianhua Xuan
    Javed Khan
    Robert Clarke
    Journal of VLSI signal processing systems for signal, image and video technology, 2003, 35 : 255 - 272
  • [6] Statistical Quality Control of Microarray Gene Expression Data
    Lu, Shen
    Segall, Richard S.
    WMSCI 2011: 15TH WORLD MULTI-CONFERENCE ON SYSTEMICS, CYBERNETICS AND INFORMATICS, VOL I, 2011, : 206 - 211
  • [7] Some statistical issues in microarray gene expression data
    Mayo, Matthew S.
    Gajewski, Byron J.
    Morris, Jeffrey S.
    RADIATION RESEARCH, 2006, 165 (06) : 745 - 748
  • [8] Statistical analysis of microarray gene expression data from a mouse model of toxoplasmosis
    Shrikant Pawar
    Cheryl D Davis
    Claire A Rinehart
    BMC Bioinformatics, 12
  • [9] Searching for evidence of altered gene expression: a comment on statistical analysis of microarray data
    Wittes, J
    Friedman, HP
    JOURNAL OF THE NATIONAL CANCER INSTITUTE, 1999, 91 (05) : 400 - 401
  • [10] Statistical analysis of microarray gene expression data from a mouse model of toxoplasmosis
    Pawar, Shrikant
    Davis, Cheryl D.
    Rinehart, Claire A.
    BMC BIOINFORMATICS, 2011, 12