Sparse minimum average variance estimation through signal extraction approach to multivariate regression

被引:0
|
作者
Ahmed, Abdulqader [1 ]
Mohammad, Saja [1 ]
机构
[1] Univ Baghdad, Coll Adm & Econ, Dept Stat, Baghdad, Iraq
来源
INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS | 2022年 / 13卷 / 01期
关键词
High dimensional predictors; Dimension reduction; sparse; Minimum average variance estimation; Signal extraction approach to multivariate regression; VARIABLE SELECTION; DIMENSION REDUCTION;
D O I
10.22075/ijnaa.2022.5660
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, a new sparse method called (MAVE-SiER) is proposed, to introduce MAVE-SiER, we combined the effective sufficient dimension reduction method MAVE with the sparse method Signal extraction approach to multivariate regression (SiER). MAVE-SiER has the benefit of expanding the Signal extraction method to multivariate regression (SiER) to nonlinear and multi-dimensional regression. MAVE-SiER also allows MAVE to deal with problems which the predictors are highly correlated. MAVE-SiER may estimate dimensions exhaustively while concurrently choosing useful variables. Simulation studies confirmed MAVE-SiER performance.
引用
收藏
页码:1167 / 1173
页数:7
相关论文
共 50 条
  • [1] Signal extraction approach for sparse multivariate response regression
    Luo, Ruiyan
    Qi, Xin
    JOURNAL OF MULTIVARIATE ANALYSIS, 2017, 153 : 83 - 97
  • [2] On the extension of sliced average variance estimation to multivariate regression
    Yoo, Jae Keun
    Lee, Keunbaik
    Wu, Seongho
    STATISTICAL METHODS AND APPLICATIONS, 2010, 19 (04): : 529 - 540
  • [3] On the extension of sliced average variance estimation to multivariate regression
    Jae Keun Yoo
    Keunbaik Lee
    Seongho Wu
    Statistical Methods & Applications, 2010, 19 : 529 - 540
  • [4] Minimum Variance Estimation for the Sparse Signal in Noise Model
    Schmutzhard, Sebastian
    Jung, Alexander
    Hlawatsch, Franz
    2011 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2011, : 124 - 128
  • [5] SPARSE MINIMUM AVERAGE VARIANCE ESTIMATION VIA QUANTILE REGRESSION GROUP VARIABLE SELECTION PENALTIES (GLQMAVE)
    Ahmed, Rihab
    Rodeen, Waleed
    INTERNATIONAL JOURNAL OF AGRICULTURAL AND STATISTICAL SCIENCES, 2021, 17 : 2395 - 2401
  • [6] MINIMUM VARIANCE UNBIASED ESTIMATION IN A MULTIVARIATE LINEAR-REGRESSION
    SCHWARZ, CJ
    SAMANTA, M
    SOUTH AFRICAN STATISTICAL JOURNAL, 1989, 23 (01) : 143 - 155
  • [7] PENALIZED MINIMUM AVERAGE VARIANCE ESTIMATION
    Wang, Tao
    Xu, Peirong
    Zhu, Lixing
    STATISTICA SINICA, 2013, 23 (02) : 543 - 569
  • [8] Minimum Average Variance Estimation with group Lasso for the multivariate response Central Mean Subspace
    Zhang, Hong-Fan
    JOURNAL OF MULTIVARIATE ANALYSIS, 2021, 184
  • [9] Sparse Multivariate Regression With Covariance Estimation
    Rothman, Adam J.
    Levina, Elizaveta
    Zhu, Ji
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2010, 19 (04) : 947 - 962
  • [10] WEIGHTED POLYNOMIAL REGRESSION DESIGNS WITH MINIMUM AVERAGE VARIANCE
    MALYUTOV, MB
    FEDOROV, VV
    THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1971, 16 (04): : 716 - 720