Local connectivity and quasi-conformal rigidity of non-renormalizable polynomials

被引:41
|
作者
Kozlovski, Oleg [1 ]
van Strien, Sebastian [1 ]
机构
[1] Univ Warwick, Inst Math, Coventry CV4 7AL, W Midlands, England
关键词
DYNAMICS;
D O I
10.1112/plms/pdn055
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that topologically conjugate non-renormalizable polynomials are quasi-conformally conjugate. From this we derive that each such polynomial can be approximated by a hyperbolic polynomial. As a by-product we prove that the Julia set of a non-renormalizable polynomial with only hyperbolic periodic points is locally connected, and the Branner-Hubbard conjecture. The main tools are the enhanced nest construction (developed in a previous joint paper with [Rigidity for real polynomials, Ann. of Math. (2) 165 (2007) 749-841.]) and a lemma of Kahn and Lyubich (for which we give an elementary proof in the real case).
引用
收藏
页码:275 / 296
页数:22
相关论文
共 34 条
  • [1] Rigidity of non-renormalizable Newton maps
    Pascale Roesch
    Yongcheng Yin
    Jinsong Zeng
    Science China(Mathematics), 2024, 67 (04) : 855 - 872
  • [2] Rigidity of non-renormalizable Newton maps
    Roesch, Pascale
    Yin, Yongcheng
    Zeng, Jinsong
    SCIENCE CHINA-MATHEMATICS, 2024, 67 (04) : 855 - 872
  • [3] Rigidity of non-renormalizable Newton maps
    Pascale Roesch
    Yongcheng Yin
    Jinsong Zeng
    Science China Mathematics, 2024, 67 : 855 - 872
  • [4] Mating Non-Renormalizable Quadratic Polynomials
    Magnus Aspenberg
    Michael Yampolsky
    Communications in Mathematical Physics, 2009, 287
  • [5] Mating Non-Renormalizable Quadratic Polynomials
    Aspenberg, Magnus
    Yampolsky, Michael
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 287 (01) : 1 - 40
  • [6] ON LOCAL AND GLOBAL RIGIDITY OF QUASI-CONFORMAL ANOSOV DIFFEOMORPHISMS
    Kalinin, Boris
    Sadovskaya, Victoria
    JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2003, 2 (04) : 567 - 582
  • [7] LOCAL PROPERTIES OF NON-RENORMALIZABLE THEORIES
    KHORUZHI.SS
    DOKLADY AKADEMII NAUK SSSR, 1967, 177 (02): : 306 - &
  • [8] QUASI-CONFORMAL RIGIDITY OF MULTICRITICAL MAPS
    Peng, Wenjuan
    Tan, Lei
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 367 (02) : 1151 - 1182
  • [9] ON A NOTION OF QUASI-CONFORMAL RIGIDITY FOR RIEMANN SURFACES
    GARDINER, FP
    ANNALS OF MATHEMATICS STUDIES, 1981, (97): : 123 - 143
  • [10] ORTHOGONAL POLYNOMIALS IN DOMAINS WITH A QUASI-CONFORMAL BOUNDARY
    ABDULLAYEV, FG
    ANDRIEVSKI, VV
    IZVESTIYA AKADEMII NAUK AZERBAIDZHANSKOI SSR SERIYA FIZIKO-TEKHNICHESKIKH I MATEMATICHESKIKH NAUK, 1983, 4 (01): : 7 - 11