Integrability of absolutely continuous transformations of measures and applications to optimal mass transportation

被引:2
|
作者
Bogachev, V. I.
Kolesnikov, A. V.
机构
[1] MSU, Lab Math Stat, Fac Mech & Math, Moscow 119992, Russia
[2] Scuola Normale Super Pisa, Ctr Ric Matemat Ennio De Giorgi, I-56100 Pisa, Italy
关键词
optimal transportation; Gaussian measure; convex measure; logarithmic Sobolev inequality; Poincare inequality; Talagrand inequality;
D O I
10.1137/S0040585X97981810
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Given two Borel probability measures mu and nu on R-d such that d nu/d mu = g, we consider certain mappings of the form T( x) = x + F( x) that transform mu into nu. Our main results give estimates of the form integral(d)(R)Phi(1)(vertical bar F vertical bar)d mu <= integral(d)(R) Phi(2)(g)d mu for certain functions Phi(1) and Phi(2) under appropriate assumptions on mu. Applications are given to optimal mass transportations in the Monge problem.
引用
收藏
页码:367 / 385
页数:19
相关论文
共 50 条