Synergism in NiMoOx precursors essential for CH4/CO2 dry reforming

被引:41
|
作者
Shi, Chuan [1 ,2 ]
Zhang, Shaohua [1 ,2 ]
Li, Xiaosong [2 ]
Zhang, Anjie [1 ,2 ]
Shi, Ming [1 ,2 ]
Zhu, Yongjun [1 ,2 ]
Qiu, Jieshan [1 ]
Au, Chaktong [3 ]
机构
[1] Dalian Univ Technol, Key Lab Ind Ecol & Environm Engn MOE, Dalian, Peoples R China
[2] Dalian Univ Technol, Lab Plasma Phys Chem, Dalian, Peoples R China
[3] Hong Kong Baptist Univ, Dept Chem, Hong Kong, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Methane; Carbon dioxide; Molybdenum carbide; Nickel; CATALYTIC PARTIAL OXIDATION; MOLYBDENUM CARBIDE; SYNTHESIS GAS; CARBON-DIOXIDE; TUNGSTEN CARBIDE; SUPPORTED COBALT; NATURAL-GAS; METHANE; CONVERSION; RESISTANCE;
D O I
10.1016/j.cattod.2013.10.076
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Ni-Mo2C(CP) and Ni-Mo2C(MM) catalysts were prepared through carbonization of NiMoOx precursors prepared by co-precipitation (CP) and mechanical mixing (MM), respectively. Different preparation methods lead to different chemical compositions, reduction properties, as well as carbonization process of NiMoOx precursors. It was found that Ni-Mo2C(CP) has better Ni dispersion than Ni-Mo2C(MM). With smaller Ni particles and higher CH4 dissociation rate, Ni-MO2C(CP) performs better than Ni-Mo2C(MM) in CH4/CO2 reforming. It is deduced that nickel is better stabilized in NiMoO4 than in NiO, and the sintering of metallic nickel during high-temperature carburization is less severe with NiMoO4(CP). Based on the results, we address for the first time the key roles of NiMoO4 as a precursor for the formation of Ni-Mo2C effective for CH4/CO2 reforming. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:46 / 52
页数:7
相关论文
共 50 条
  • [1] CO2 reforming of CH4
    Bradford, MCJ
    Vannice, MA
    CATALYSIS REVIEWS-SCIENCE AND ENGINEERING, 1999, 41 (01): : 1 - 42
  • [2] Integrated CO2 Capture and Dry Reforming of CH4 to Syngas: A Review
    Bhaskaran, Aathira
    Singh, Satyapaul A.
    Reddy, Benjaram M.
    Roy, Sounak
    LANGMUIR, 2024, 40 (29) : 14766 - 14778
  • [3] Thermodynamic analysis of dry reforming of CH4 with CO2 at high pressures
    Chein, R. Y.
    Chen, Y. C.
    Yu, C. T.
    Chung, J. N.
    JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2015, 26 : 617 - 629
  • [4] Dry Reforming of CH4 With CO2 to Generate Syngas by Combined Plasma Catalysis
    Pan, Kuan Lun
    Chung, Wei Chieh
    Chang, Moo Been
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2014, 42 (12) : 3809 - 3818
  • [5] A Novel Catalyst for CO2 Reforming of CH4
    Chuan Jing HUANG1
    ChineseChemicalLetters, 2001, (03) : 249 - 252
  • [6] Catalysts for CO2 reforming of CH4: a review
    Li, Meijia
    Sun, Zhuxing
    Hu, Yun Hang
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (21) : 12495 - 12520
  • [7] CH4 REFORMING WITH CO2 TO SYNTHESIS GAS
    TANG Song-Bai QIU Fa-Li LU Shao-Jie ZHAO Ming-Ying Chengdu Institute of Organic Chemistry
    Journal of Natural Gas Chemistry, 1993, (01) : 62 - 68
  • [8] A novel catalyst for CO2 reforming of CH4
    Huang, CJ
    Zheng, XM
    Mo, LY
    Fei, JH
    CHINESE CHEMICAL LETTERS, 2001, 12 (03) : 249 - 252
  • [9] CO2 reforming of CH4 over La-Ni based perovskite precursors
    Sierra Gallego, German
    Mondragon, Fanor
    Barrault, Joel
    Tatibouet, Jean-Michel
    Batiot-Dupeyrat, Catherine
    APPLIED CATALYSIS A-GENERAL, 2006, 311 : 164 - 171
  • [10] CO2 reforming of CH4 over Ni-containing phyllosilicates as catalyst precursors
    Sivaiah, M. V.
    Petit, S.
    Barrault, J.
    Batiot-Dupeyrat, C.
    Valange, S.
    CATALYSIS TODAY, 2010, 157 (1-4) : 397 - 403