Evaluating the performance of CMIP3 and CMIP5 global climate models over the north-east Atlantic region

被引:106
|
作者
Perez, Jorge [1 ]
Menendez, Melisa [1 ]
Mendez, Fernando J. [1 ]
Losada, Inigo J. [1 ]
机构
[1] Univ Cantabria, Environm Hydraul Inst IH Cantabria, Santander 39011, Spain
关键词
Downscaling; General circulation models; Projections; Skill; Weather types; EARTH SYSTEM MODELS; MINIMUM TEMPERATURE; MAXIMUM TEMPERATURE; PRECIPITATION; CLASSIFICATIONS; EUROPE; WELL;
D O I
10.1007/s00382-014-2078-8
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
One of the main sources of uncertainty in estimating climate projections affected by global warming is the choice of the global climate model (GCM). The aim of this study is to evaluate the skill of GCMs from CMIP3 and CMIP5 databases in the north-east Atlantic Ocean region. It is well known that the seasonal and interannual variability of surface inland variables (e. g. precipitation and snow) and ocean variables (e. g. wave height and storm surge) are linked to the atmospheric circulation patterns. Thus, an automatic synoptic classification, based on weather types, has been used to assess whether GCMs are able to reproduce spatial patterns and climate variability. Three important factors have been analyzed: the skill of GCMs to reproduce the synoptic situations, the skill of GCMs to reproduce the historical inter-annual variability and the consistency of GCMs experiments during twenty-first century projections. The results of this analysis indicate that the most skilled GCMs in the study region are UKMO-HadGEM2, ECHAM5/MPI-OM and MIROC3.2(hires) for CMIP3 scenarios and ACCESS1.0, ECEARTH, HadGEM2-CC, HadGEM2-ES and CMCC-CM for CMIP5 scenarios. These models are therefore recommended for the estimation of future regional multi-model projections of surface variables driven by the atmospheric circulation in the north-east Atlantic Ocean region.
引用
收藏
页码:2663 / 2680
页数:18
相关论文
共 50 条
  • [1] Evaluating the performance of CMIP3 and CMIP5 global climate models over the north-east Atlantic region
    Jorge Perez
    Melisa Menendez
    Fernando J. Mendez
    Inigo J. Losada
    Climate Dynamics, 2014, 43 : 2663 - 2680
  • [2] Natural climate variability and teleconnections to precipitation over the Pacific-North American region in CMIP3 and CMIP5 models
    Polade, Suraj D.
    Gershunov, Alexander
    Cayan, Daniel R.
    Dettinger, Michael D.
    Pierce, David W.
    GEOPHYSICAL RESEARCH LETTERS, 2013, 40 (10) : 2296 - 2301
  • [3] ENSO representation in climate models: from CMIP3 to CMIP5
    Bellenger, H.
    Guilyardi, E.
    Leloup, J.
    Lengaigne, M.
    Vialard, J.
    CLIMATE DYNAMICS, 2014, 42 (7-8) : 1999 - 2018
  • [4] ENSO representation in climate models: from CMIP3 to CMIP5
    H. Bellenger
    E. Guilyardi
    J. Leloup
    M. Lengaigne
    J. Vialard
    Climate Dynamics, 2014, 42 : 1999 - 2018
  • [5] Are CMIP5 Models Better than CMIP3 Models in Simulating Precipitation over East Asia?
    Kusunoki, Shoji
    Arakawa, Osamu
    JOURNAL OF CLIMATE, 2015, 28 (14) : 5601 - 5621
  • [6] Evaluation of CMIP3 and CMIP5 Models over the Australian Region to Inform Confidence in Projections
    Moise, A.
    Wilson, L.
    Grose, M.
    Whetton, P.
    Watterson, I.
    Bhend, J.
    Bathols, J.
    Hanson, L.
    Erwin, T.
    Bedin, T.
    Heady, C.
    Rafter, T.
    AUSTRALIAN METEOROLOGICAL AND OCEANOGRAPHIC JOURNAL, 2015, 65 (01): : 19 - 53
  • [7] Role of north tropical atlantic SST on the ENSO simulated using CMIP3 and CMIP5 models
    Yoo-Geun Ham
    Jong-Seong Kug
    Climate Dynamics, 2015, 45 : 3103 - 3117
  • [8] Role of north tropical atlantic SST on the ENSO simulated using CMIP3 and CMIP5 models
    Ham, Yoo-Geun
    Kug, Jong-Seong
    CLIMATE DYNAMICS, 2015, 45 (11-12) : 3103 - 3117
  • [9] Simulating Clouds with Global Climate Models: A Comparison of CMIP5 Results with CMIP3 and Satellite Data
    Lauer, Axel
    Hamilton, Kevin
    JOURNAL OF CLIMATE, 2013, 26 (11) : 3823 - 3845
  • [10] Anthropogenic changes of the thermal and zonal flow structure over Western Europe and Eastern North Atlantic in CMIP3 and CMIP5 models
    Reindert J. Haarsma
    Frank Selten
    Geert Jan van Oldenborgh
    Climate Dynamics, 2013, 41 : 2577 - 2588