Optimization of label-free nano LC-MS/MS analysis of the placental proteome

被引:5
|
作者
Luyten, Leen J. [1 ,2 ]
Dieu, Marc [1 ,3 ]
Demazy, Catherine [1 ,3 ]
Fransolet, Maude [1 ,3 ]
Nawrot, Tim S. [2 ,4 ]
Renard, Patricia [1 ,3 ]
Debacq-Chainiaux, Florence [1 ]
机构
[1] Univ Namur UNamur, Unite Rech Biol Cellulaire URBC, Namur Res Inst Life Sci Narilis, Namur, Belgium
[2] Hasselt Univ UHasselt, Ctr Environm Sci, Diepenbeek, Belgium
[3] Univ Namur UNamur, Mass Spectrometry Facil, MaSUN, Namur, Belgium
[4] Leuven Univ KULeuven, Dept Publ Hlth & Primary Care, Occupat & Environm Med, Leuven, Belgium
关键词
Placenta; Proteomics; Label-free nano LC-MS/MS; MEMBRANE; PROTEINS;
D O I
10.1016/j.placenta.2020.09.013
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The placenta can be regarded as a mirror of the events to which the fetus is exposed during development. The placental proteome has been studied with several methodologies differing in sample handling, protein extraction, and processing. We optimized a protocol to analyze the placental proteome by means of label-free nano-LC-MS/MS mass spectrometry with regard to sample treatment, protein extraction, and protein digestion, in order to obtain a high protein concentration for identification of a specific protein signature according to the conditions studied. We recommend mechanical tissue disruption, blood removal prior to protein extraction, and FASP-based or in-gel digestion.
引用
收藏
页码:159 / 162
页数:4
相关论文
共 50 条
  • [1] Proteome dataset of Hemileia vastatrix by LC-MS/MS label-free identification
    Cury, Natalia Faustino
    Ribeiro, Daiane Gonzaga
    de Lima, Jonathan Dias
    Mendes, Pollyana da Nobrega
    Fernandez, Diana
    Fontes, Wagner
    Castro, Mariana S.
    Sousa, Marcelo V.
    Martins, Natalia F.
    Mehta, Angela
    DATA IN BRIEF, 2022, 43
  • [2] Analysis of the rat hypothalamus proteome by data-independent label-free LC-MS/MS
    Stelzhammer, Viktoria
    Amess, Bob
    Martins-de-Souza, Daniel
    Levin, Yishai
    Ozanne, Susan E.
    Martin-Gronert, Malgorzata S.
    Urday, Sebastian
    Bahn, Sabine
    Guest, Paul C.
    PROTEOMICS, 2012, 12 (22) : 3386 - 3392
  • [3] Is label-free LC-MS/MS ready for biomarker discovery?
    Sandin, Marianne
    Chawade, Aakash
    Levander, Fredrik
    PROTEOMICS CLINICAL APPLICATIONS, 2015, 9 (3-4) : 289 - 294
  • [4] Proteome profiling of tolbutamide-treated rat primary hepatocytes using nano LC-MS/MS and label-free protein quantitation
    Cho, Young-Eun
    Kim, Sang-Hyun
    Baek, Moon-Chang
    ELECTROPHORESIS, 2012, 33 (18) : 2806 - 2817
  • [5] Label-free Quantitative Analysis of One-dimensional PAGE LC/MS/MS Proteome
    Gao, Ben-Bo
    Stuart, Lisa
    Feener, Edward P.
    MOLECULAR & CELLULAR PROTEOMICS, 2008, 7 (12) : 2399 - 2409
  • [6] Protein Quantification in Label-Free LC-MS Experiments
    Clough, Timothy
    Key, Melissa
    Ott, Ilka
    Ragg, Susanne
    Schadow, Gunther
    Vitek, Olga
    JOURNAL OF PROTEOME RESEARCH, 2009, 8 (11) : 5275 - 5284
  • [7] Normalization and missing value imputation for label-free LC-MS analysis
    Yuliya V Karpievitch
    Alan R Dabney
    Richard D Smith
    BMC Bioinformatics, 13
  • [8] Normalization and missing value imputation for label-free LC-MS analysis
    Karpievitch, Yuliya V.
    Dabney, Alan R.
    Smith, Richard D.
    BMC BIOINFORMATICS, 2012, 13
  • [9] Bayesian Normalization Model for Label-Free Quantitative Analysis by LC-MS
    Ranjbar, Mohammad R. Nezami
    Tadesse, Mahlet G.
    Wang, Yue
    Ressom, Habtom W.
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2015, 12 (04) : 914 - 927
  • [10] Dataset of mouse hippocampus profiled by LC-MS/MS for label-free quantitation
    English, Jane A.
    Scaife, Caitriona
    Harauma, Akiko
    Focking, Melanie
    Wynne, Kieran
    Cagney, Gerard
    Moriguchi, Toru
    Cotter, David R.
    DATA IN BRIEF, 2016, 7 : 341 - 343