3D Shape Processing by Convolutional Denoising Autoencoders on Local Patches

被引:6
|
作者
Sarkar, Kripasindhu [1 ,2 ]
Varanasi, Kiran [1 ]
Stricker, Didier [1 ,2 ]
机构
[1] DFKI German Res Ctr Artificial Intelligence, Kaiserslautern, Germany
[2] Tech Univ Kaiserslautern, Kaiserslautern, Germany
关键词
D O I
10.1109/WACV.2018.00213
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a system for surface completion and inpainting of 3D shapes using denoising autoencoders with convolutional layers, learnt on local patches. Our method uses height map based local patches parameterized using 3D mesh quadrangulation of the low resolution input shape. This provides us sufficient amount of local 3D patch dataset to learn deep generative Convolutional Neural Networks (CNNs) for the task of repairing moderate sized holes. We design generative networks specifically suited for the 3D encoding following ideas from the recent progress in 2D inpainting, and show our results to be better than the previous methods of surface inpainting that use linear dictionary. We validate our method on both synthetic shapes and real world scans.
引用
收藏
页码:1925 / 1934
页数:10
相关论文
共 50 条
  • [1] Detection of substances in food with 3D convolutional autoencoders
    Detektion von Stoffen in Lebensmitteln mit Hilfe von 3D-Faltungsautoencodern
    Anastasiadis, Johannes (anastasiadis@kit.edu), 2018, De Gruyter Oldenbourg (85):
  • [2] Detection of substances in food with 3D convolutional autoencoders
    Anastasiadis, Johannes
    Leon, Fernando Puente
    TM-TECHNISCHES MESSEN, 2018, 85 : S38 - S44
  • [3] Variational autoencoders for 3D data processing
    Szilárd Molnár
    Levente Tamás
    Artificial Intelligence Review, 57
  • [4] Variational autoencoders for 3D data processing
    Molnar, Szilard
    Tamas, Levente
    ARTIFICIAL INTELLIGENCE REVIEW, 2024, 57 (02)
  • [5] Shape analysis of local facial patches for 3D facial expression recognition
    Maalej, Ahmed
    Ben Amor, Boulbaba
    Daoudi, Mohamed
    Srivastava, Anuj
    Berretti, Stefano
    PATTERN RECOGNITION, 2011, 44 (08) : 1581 - 1589
  • [6] Generating 3D Faces Using Convolutional Mesh Autoencoders
    Ranjan, Anurag
    Bolkart, Timo
    Sanyal, Soubhik
    Black, Michael J.
    COMPUTER VISION - ECCV 2018, PT III, 2018, 11207 : 725 - 741
  • [7] Hierarchy Denoising Recursive Autoencoders for 3D Scene Layout Prediction
    Shi, Yifei
    Chang, Angel Xuan
    Wu, Zhelun
    Savva, Manolis
    Xu, Kai
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 1771 - 1780
  • [8] Significant Dimension Reduction of 3D Brain MRI using 3D Convolutional Autoencoders
    Arai, Hayato
    Chayama, Yusuke
    Iyatomi, Hitoshi
    Oishi, Kenichi
    2018 40TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2018, : 5162 - 5165
  • [9] Image denoising using patch ordering and 3D transformation of patches
    Colak, Ozden
    Eksioglu, Ender M.
    IET IMAGE PROCESSING, 2019, 13 (13) : 2636 - 2646
  • [10] Anisotropic SpiralNet for 3D Shape Completion and Denoising
    Kim, Seong Uk
    Roh, Jihyun
    Im, Hyeonseung
    Kim, Jongmin
    SENSORS, 2022, 22 (17)