Structured Regression Gradient Boosting

被引:1
|
作者
Diego, Ferran [1 ]
Hamprecht, Fred A. [1 ]
机构
[1] Heidelberg Univ, Heidelberg Collaboratory Image Proc HCI, Interdisciplinary Ctr Sci Comp IWR, D-69115 Heidelberg, Germany
关键词
D O I
10.1109/CVPR.2016.162
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a new way to train a structured output prediction model. More specifically, we train nonlinear data terms in a Gaussian Conditional Random Field (GCRF) by a generalized version of gradient boosting. The approach is evaluated on three challenging regression benchmarks: vessel detection, single image depth estimation and image inpainting. These experiments suggest that the proposed boosting framework matches or exceeds the state-of-the-art.
引用
收藏
页码:1459 / 1467
页数:9
相关论文
共 50 条
  • [1] Gradient and Newton boosting for classification and regression
    Sigrist, Fabio
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 167
  • [2] Gradient boosting for extreme quantile regression
    Velthoen, Jasper
    Dombry, Clement
    Cai, Juan-Juan
    Engelke, Sebastian
    EXTREMES, 2023, 26 (04) : 639 - 667
  • [3] Gradient and Newton boosting for classification and regression
    Sigrist, Fabio
    Expert Systems with Applications, 2021, 167
  • [4] Gradient boosting for extreme quantile regression
    Jasper Velthoen
    Clément Dombry
    Juan-Juan Cai
    Sebastian Engelke
    Extremes, 2023, 26 : 639 - 667
  • [5] A novel gradient boosting approach for imbalanced regression
    Zhang, Wenchao
    Shi, Peixin
    Jia, Pengjiao
    Zhou, Xiaoqi
    NEUROCOMPUTING, 2024, 601
  • [6] Boosting multivariate structured additive distributional regression models
    Stroemer, Annika
    Klein, Nadja
    Staerk, Christian
    Klinkhammer, Hannah
    Mayr, Andreas
    STATISTICS IN MEDICINE, 2023, 42 (11) : 1779 - 1801
  • [7] Energy Consumption Forecasts by Gradient Boosting Regression Trees
    Di Persio, Luca
    Fraccarolo, Nicola
    MATHEMATICS, 2023, 11 (05)
  • [8] GBRTVis: online analysis of gradient boosting regression tree
    Huang, Yifei
    Liu, Yuhua
    Li, Chenhui
    Wang, Changbo
    JOURNAL OF VISUALIZATION, 2019, 22 (01) : 125 - 140
  • [9] Improved Differentially Private Regression via Gradient Boosting
    Tang, Shuai
    Aydore, Sergul
    Kearns, Michael
    Rho, Saeyoung
    Roth, Aaron
    Wang, Yichen
    Wang, Yu-Xiang
    Wu, Zhiwei Steven
    IEEE CONFERENCE ON SAFE AND TRUSTWORTHY MACHINE LEARNING, SATML 2024, 2024, : 33 - 55
  • [10] GBRTVis: online analysis of gradient boosting regression tree
    Yifei Huang
    Yuhua Liu
    Chenhui Li
    Changbo Wang
    Journal of Visualization, 2019, 22 : 125 - 140