Comparison of Stacked Sentinel-3 A&B and AltiKa Repeat Cycle Data

被引:3
|
作者
Marks, K. M. [1 ]
Smith, W. H. F. [1 ]
机构
[1] NOAA, Lab Satellite Altimetry, College Pk, MD 20740 USA
基金
美国海洋和大气管理局;
关键词
satellite data; altimetry; sea surface height; seamounts; Sentinel-3; AltiKa;
D O I
10.1029/2021EA001892
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Sentinel-3 A&B radar altimeters yield sea surface height measurements in both a high-precision Synthetic Aperture Radar Mode (SARM), and a Pseudo-Low Resolution Mode (PLRM). We stacked repeat cycles from both missions and in both modes to compare their resolution of small seamounts. Stacking entailed removing non-geoidal heights and height errors, testing for consecutive measurements over ocean, aligning to common locations at 1 km intervals along a synthetic track, and forming a median height profile. These profiles are available from the National Centers for Environmental Information (NCEI) data repository. Global maps show that, over the oceans, the median height is usually derived from more than 49 cycles, and the typical error in an individual PLRM measurement is approximately 1.9 times greater than an individual SARM measurement. We applied a seamount detection bandpass filter to the median profiles and compared their spectral resolution to that of the Satellite for ARgos and AltiKa (SARAL) AltiKa mission. Small seamounts are similarly resolved by Sentinel-3 A&B SARM data and by the SARAL/AltiKa data.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Detecting small seamounts in AltiKa repeat cycle data
    Marks, K. M.
    Smith, W. H. F.
    MARINE GEOPHYSICAL RESEARCH, 2016, 37 (04) : 349 - 359
  • [2] Detecting small seamounts in AltiKa repeat cycle data
    K. M. Marks
    W. H. F. Smith
    Marine Geophysical Research, 2016, 37 : 349 - 359
  • [3] COMPARISON OF SENTINEL-1 SAR AND SENTINEL-3 ALTIMETRY DATA FOR SEA ICE TYPE DISCRIMINATION
    Aldenhoff, Wiebke
    Eriksson, Leif E. B.
    Heuze, Celine
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 4238 - 4241
  • [4] Validation and Comparison of Water Quality Products in Baltic Lakes Using Sentinel-2 MSI and Sentinel-3 OLCI Data
    Soomets, Tuuli
    Uudeberg, Kristi
    Jakovels, Dainis
    Brauns, Agris
    Zagars, Matiss
    Kutser, Tiit
    SENSORS, 2020, 20 (03)
  • [5] River Flow Monitoring by Sentinel-3 OLCI and MODIS: Comparison and Combination
    Tarpanelli, Angelica
    Iodice, Filippo
    Brocca, Luca
    Restano, Marco
    Benveniste, Jerome
    REMOTE SENSING, 2020, 12 (23) : 1 - 19
  • [6] Comparison of Lake Optical Water Types Derived from Sentinel-2 and Sentinel-3
    Soomets, Tuuli
    Uudeberg, Kristi
    Jakovels, Dainis
    Zagars, Matiss
    Reinart, Anu
    Brauns, Agris
    Kutser, Tiit
    REMOTE SENSING, 2019, 11 (23)
  • [7] Component temperature inversion algorithm based on Sentinel-3 SLSTR data
    Kang T.
    Guo M.
    Cao B.
    Ren H.
    Fan W.
    National Remote Sensing Bulletin, 2021, 25 (08) : 1671 - 1682
  • [8] Enhancing Algal Bloom Level Monitoring with CYGNSS and Sentinel-3 Data
    Jia, Yan
    Xiao, Zhiyu
    Yang, Liwen
    Liu, Quan
    Jin, Shuanggen
    Lv, Yan
    Yan, Qingyun
    REMOTE SENSING, 2024, 16 (20)
  • [9] Statistical Evaluation of Sentinel-3 OLCI Ocean Color Data Retrievals
    Mikelsons, Karlis
    Wang, Menghua
    Kwiatkowska, Ewa
    Jiang, Lide
    Dessailly, David
    Gossn, Juan Ignacio
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [10] INTERCOMPARISON OF DESIS, SENTINEL-2 (MSI) AND SENTINEL-3 (OLCI) DATA FOR WATER COLOUR APPLICATIONS
    Soppa, M. A.
    Dinh, D. A.
    Silva, B.
    Steinmetz, F.
    Alvarado, L.
    Bracher, A.
    1ST DESIS USER WORKSHOP - IMAGING SPECTROMETER SPACE MISSION, CALIBRATION AND VALIDATION, APPLICATIONS, METHODS, 2022, 46-1 (W1): : 69 - 72