Leptin Attenuates Hypoxia/Reoxygenation-Induced Activation of the Intrinsic Pathway of Apoptosis in Rat H9c2 Cells

被引:56
|
作者
Shin, Eyunjung [1 ]
Schram, Kristin [1 ]
Zheng, Xi-Long [1 ,2 ]
Sweeney, Gary [1 ]
机构
[1] York Univ, Dept Biol, Toronto, ON M3J 1P3, Canada
[2] Univ Calgary, Dept Biochem & Mol Biol, Calgary, AB T2N 1N4, Canada
基金
加拿大健康研究院;
关键词
DNA STRAND BREAKS; THERAPEUTIC TARGET; BAX; PROTECTS; OBESITY; DEATH; PROLIFERATION; MITOCHONDRIA; ISCHEMIA; HYPERTROPHY;
D O I
10.1002/jcp.21883
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Cardiomyocyte apoptosis is a component of cardiac remodeling that can contribute to heart failure in obesity. A role for leptin in mediating this process has been suggested and the objective of this work was to investigate the effect of leptin on apoptosis and associated mechanisms in H9c2 cells which were subjected to hypoxia/reoxygenation (HR) to mimic myocardial ischemia/reperfusion. Qualitative immunofluorescent and quantitative laser scanning cytometry approaches demonstrated that exposure of cells to HR increased DNA fragmentation (TUNEL staining) which was attenuated by leptin (6 nM, 1 h) pretreatment. We also found increased annexin-V binding and caspase-3 activity in cells exposed to HR, both of which were attenuated by leptin pretreatment. Leptin reduced HR-induced translocation of the pro-apoptotic protein Bax to the mitochondrial membrane, which provides a mechanism to explain its protective effect. Consequently, leptin attenuated the HR-induced decrease in mitochondrial membrane potential and increase in cytochrome c release from mitochondria. Leptin treatment increased the phosphorylation of p38 MAPK and AMPK and respective inhibitors of these kinases, SB203580 and Compound C, prevented the ability of leptin to decrease HR-induced caspase-3 activity. In conclusion, we establish mechanisms via which leptin exerts anti-apoptotic effects that may be of significance in understanding the development of heart failure in obesity. J. Cell. Physiol. 221: 490-497, 2009. (C) 2009 Wiley-Liss, Inc.
引用
收藏
页码:490 / 497
页数:8
相关论文
共 50 条
  • [1] Suppression of rat Frizzled-2 attenuates hypoxia/reoxygenation-induced Ca2+ accumulation in rat H9c2 cells
    Zhou, Shan-shan
    He, Fei
    Chen, Ai-hua
    Hao, Pei-yuan
    Song, Xu-dong
    EXPERIMENTAL CELL RESEARCH, 2012, 318 (13) : 1480 - 1491
  • [2] Clematichinenoside (AR) Attenuates Hypoxia/Reoxygenation-Induced H9c2 Cardiomyocyte Apoptosis via a Mitochondria-Mediated Signaling Pathway
    Ding, Haiyan
    Han, Rong
    Chen, Xueshan
    Fang, Weirong
    Liu, Meng
    Wang, Xuemei
    Wei, Qin
    Kodithuwakku, Nandani Darshika
    Li, Yunman
    MOLECULES, 2016, 21 (06)
  • [3] Protective effect of α-mangostin derivatives on hypoxia/reoxygenation-induced apoptosis in H9C2 cells and their mechanism
    Zhao, Yan
    Yu, Wanrong
    Liu, Jiangyun
    Wang, Haohao
    Du, Rui
    Yan, Zhaowei
    PHYTOCHEMISTRY LETTERS, 2022, 47 : 174 - 179
  • [4] Exenatide protects against hypoxia/reoxygenation-induced apoptosis by improving mitochondrial function in H9c2 cells
    Chang, Guanglei
    Zhang, Dongying
    Liu, Jian
    Zhang, Peng
    Ye, Lin
    Lu, Kai
    Duan, Qin
    Zheng, Aihua
    Qin, Shu
    EXPERIMENTAL BIOLOGY AND MEDICINE, 2014, 239 (04) : 414 - 422
  • [5] Isoquercetin ameliorated hypoxia/reoxygenation-induced H9C2 cardiomyocyte apoptosis via a mitochondrial-dependent pathway
    Cao, Heng
    Xu, Hao
    Zhu, Guoqing
    Liu, Shaowen
    BIOMEDICINE & PHARMACOTHERAPY, 2017, 95 : 938 - 943
  • [6] Inhibition of microRNA-101 attenuates hypoxia/reoxygenation-induced apoptosis through induction of autophagy in H9c2 cardiomyocytes
    Wu, Dongkai
    Jiang, Haihe
    Chen, Shengxi
    Zhang, Heng
    MOLECULAR MEDICINE REPORTS, 2015, 11 (05) : 3988 - 3994
  • [7] Imperatorin protects H9c2 cardiomyoblasts cells from hypoxia/reoxygenation-induced injury through activation of ERK signaling pathway
    Liao, Bihong
    Chen, Ruimian
    Lin, Feng
    Mai, Aihuan
    Chen, Jie
    Li, Huimin
    Dong, Shaohong
    Xu, Zhenglei
    SAUDI PHARMACEUTICAL JOURNAL, 2017, 25 (04) : 615 - 619
  • [8] Prokineticin 2 relieves hypoxia/reoxygenation-induced injury through activation of Akt/mTOR pathway in H9c2 cardiomyocytes
    Su, Gang
    Sun, Guangli
    Liu, Hai
    Shu, Liliang
    Zhang, Weiwei
    Liang, Zhenxing
    ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY, 2020, 48 (01) : 345 - 352
  • [9] Resveratrol attenuates hypoxia/reoxygenation-induced Ca2+ overload by inhibiting the Wnt5a/Frizzled-2 pathway in rat H9c2 cells
    Wu, Xiang
    Zhou, Shanshan
    Zhu, Ning
    Wang, Xianbao
    Jin, Wen
    Song, Xudong
    Chen, Aihua
    MOLECULAR MEDICINE REPORTS, 2014, 10 (05) : 2542 - 2548
  • [10] Protective effects of miR-25 against hypoxia/reoxygenation-induced fibrosis and apoptosis of H9c2 cells
    Liu, Qifang
    Wang, Yongjin
    Yang, Tianlun
    Wei, Wu
    INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE, 2016, 38 (04) : 1225 - 1234