A class of block smoothers for multigrid solution of saddle point problems with application to fluid flow

被引:0
|
作者
Krzyzanowski, P [1 ]
机构
[1] Warsaw Univ, Inst Appl Math, PL-02097 Warsaw, Poland
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We design and analyse an iterative method, which uses a specific block smoother for the multigrid cycle. Among many possibilities we choose a few multigrid iterations as the smoother's blocks. The result is a multilevel procedure that works for regular saddle point problems and features all good properties of the classical multigrid for elliptic problems, such as the optimal complexity and convergence rate independent of the number of levels.
引用
收藏
页码:1006 / 1013
页数:8
相关论文
共 50 条
  • [1] A Class of Smoothers for Saddle Point Problems
    Walter Zulehner
    Computing, 2000, 65 : 227 - 246
  • [2] A class of smoothers for saddle point problems
    Zulehner, W
    COMPUTING, 2000, 65 (03) : 227 - 246
  • [3] ON THE ANALYSIS OF BLOCK SMOOTHERS FOR SADDLE POINT PROBLEMS
    Drzisga, Daniel
    John, Lorenz
    Rude, Ulrich
    Wohlmuth, Barbara
    Zulehner, Walter
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2018, 39 (02) : 932 - 960
  • [4] Multigrid methods for saddle point systems using constrained smoothers
    Chen, Long
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2015, 70 (12) : 2854 - 2866
  • [5] On Schwarz-type smoothers for saddle point problems
    Schöberl, J
    Zulehner, W
    NUMERISCHE MATHEMATIK, 2003, 95 (02) : 377 - 399
  • [6] On Schwarz-type Smoothers for Saddle Point Problems
    Joachim Schöberl
    Walter Zulehner
    Numerische Mathematik, 2003, 95 : 377 - 399
  • [7] Comparison of pressure correction smoothers for multigrid solution of incompressible flow
    Gjesdal, T
    Lossius, MEH
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1997, 25 (04) : 393 - 405
  • [8] Multigrid methods for saddle point problems: Darcy systems
    Brenner, Susanne C.
    Oh, Duk-Soon
    Sung, Li-Yeng
    NUMERISCHE MATHEMATIK, 2018, 138 (02) : 437 - 471
  • [9] Multigrid methods for saddle point problems: Optimality systems
    Brenner, Susanne C.
    Liu, Sijing
    Sung, Li-yeng
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 372
  • [10] Multigrid methods for saddle point problems: Oseen system
    Brenner, Susanne C.
    Li, Hengguang
    Sung, Li-yeng
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (09) : 2056 - 2067