Foliations with radial Kupka set and pencils of Calabi-Yau hypersurfaces

被引:3
|
作者
Calvo-Andrade, Omegar [1 ]
Mendes, Luis Gustavo [1 ]
Pan, Ivan [1 ]
机构
[1] Univ Fed Rio Grande Sul, Dept Matemat, BR-91509900 Porto Alegre, RS, Brazil
关键词
holomorphic foliation; fibration; Calabi-Yau manifold;
D O I
10.1112/S0010437X06002375
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that holomorphic singular codimension one foliations of the complex projective space with a Kupka singular set of radial type and verifying some global hypotheses have rational first integral. The generic elements of such pencils are Calabi-Yau.
引用
收藏
页码:1587 / 1593
页数:7
相关论文
共 50 条
  • [1] On noncommutative Calabi-Yau hypersurfaces
    Belhaj, A
    Saidi, EH
    PHYSICS LETTERS B, 2001, 523 (1-2) : 191 - 198
  • [2] Machine learning Calabi-Yau hypersurfaces
    Berman, David S.
    He, Yang-Hui
    Hirst, Edward
    PHYSICAL REVIEW D, 2022, 105 (06)
  • [3] Fano hypersurfaces and Calabi-Yau supermanifolds
    Garavuso, Richard S.
    Kreuzer, Maximilian
    Noll, Alexander
    JOURNAL OF HIGH ENERGY PHYSICS, 2009, (03):
  • [4] PERIODS OF TROPICAL CALABI-YAU HYPERSURFACES
    Yamamoto, Yuto
    JOURNAL OF ALGEBRAIC GEOMETRY, 2022, 31 (02) : 303 - 343
  • [5] On stokes matrices of Calabi-Yau hypersurfaces
    Doran, Charles F.
    Hosono, Shinobu
    ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2007, 11 (01) : 147 - 174
  • [6] Canonical liftings of Calabi-Yau hypersurfaces: Dwork hypersurfaces
    Grabowski, Przemyslaw
    MANUSCRIPTA MATHEMATICA, 2025, 176 (02)
  • [7] Calabi-Yau Hypersurfaces and SU-Bordism
    Limonchenko, Ivan Yu.
    Lu, Zhi
    Panov, Taras E.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2018, 302 (01) : 270 - 278
  • [8] CALABI-YAU COMPONENTS IN GENERAL TYPE HYPERSURFACES
    Leung, Naichung Conan
    Wan, Tom Y. H.
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2009, 83 (01) : 43 - 74
  • [9] Systematics of axion inflation in Calabi-Yau hypersurfaces
    Long, Cody
    McAllister, Liam
    Stout, John
    JOURNAL OF HIGH ENERGY PHYSICS, 2017, (02):
  • [10] Orbifold hodge numbers of Calabi-Yau hypersurfaces
    Poddar, M
    PACIFIC JOURNAL OF MATHEMATICS, 2003, 208 (01) : 151 - 167