PortEco: a resource for exploring bacterial biology through high-throughput data and analysis tools

被引:17
|
作者
Hu, James C. [1 ]
Sherlock, Gavin [2 ]
Siegele, Deborah A. [3 ]
Aleksander, Suzanne A. [1 ]
Ball, Catherine A. [2 ]
Demeter, Janos [2 ]
Gouni, Sushanth [1 ]
Holland, Timothy A. [4 ]
Karp, Peter D. [4 ]
Lewis, John E. [1 ]
Liles, Nathan M. [1 ]
McIntosh, Brenley K. [1 ]
Mi, Huaiyu [5 ]
Muruganujan, Anushya [5 ]
Wymore, Farrell [2 ]
Thomas, Paul D. [5 ]
机构
[1] Texas A&M Univ, Dept Biochem & Biophys, College Stn, TX 77843 USA
[2] Stanford Univ, Dept Genet, Stanford, CA 94305 USA
[3] Texas A&M Univ, Dept Biol, College Stn, TX 77843 USA
[4] SRI Int, Ctr Artificial Intelligence, Menlo Pk, CA 94025 USA
[5] Univ So Calif, Dept Prevent Med, Los Angeles, CA 90089 USA
基金
美国国家卫生研究院;
关键词
ESCHERICHIA-COLI; GENE-EXPRESSION; DATA SETS; SEQUENCE; ONTOLOGY; NETWORK;
D O I
10.1093/nar/gkt1203
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
PortEco (http://porteco.org) aims to collect, curate and provide data and analysis tools to support basic biological research in Escherichia coli (and eventually other bacterial systems). PortEco is implemented as a 'virtual' model organism database that provides a single unified interface to the user, while integrating information from a variety of sources. The main focus of PortEco is to enable broad use of the growing number of high-throughput experiments available for E. coli, and to leverage community annotation through the EcoliWiki and GONUTS systems. Currently, PortEco includes curated data from hundreds of genome-wide RNA expression studies, from high-throughput phenotyping of single-gene knockouts under hundreds of annotated conditions, from chromatin immunoprecipitation experiments for tens of different DNA-binding factors and from ribosome profiling experiments that yield insights into protein expression. Conditions have been annotated with a consistent vocabulary, and data have been consistently normalized to enable users to find, compare and interpret relevant experiments. PortEco includes tools for data analysis, including clustering, enrichment analysis and exploration via genome browsers. PortEco search and data analysis tools are extensively linked to the curated gene, metabolic pathway and regulation content at its sister site, EcoCyc.
引用
收藏
页码:D677 / D684
页数:8
相关论文
共 50 条
  • [1] PortEco: a resource for exploring bacterial biology through high-throughput data and analysis tools (vol 42, pg D677, 2014)
    Hu, James C.
    Sherlock, Gavin
    Siegele, Deborah A.
    Aleksander, Suzanne A.
    Altman, Tomer
    Ball, Catherine A.
    Demeter, Janos
    Gouni, Sushanth
    Holland, Timothy A.
    Karp, Peter D.
    Lewis, John E.
    Liles, Nathan M.
    McIntosh, Brenley K.
    Mi, Huaiyu
    Muruganujan, Anushya
    Wymore, Farrell
    Thomas, Paul D.
    NUCLEIC ACIDS RESEARCH, 2014, 42 (19) : 12330 - 12330
  • [2] Exploring dinoflagellate biology with high-throughput proteomics
    Morse, David
    Tse, Sirius P. K.
    Lo, Samuel C. L.
    HARMFUL ALGAE, 2018, 75 : 16 - 26
  • [3] Enabling high-throughput data management for systems biology: The bioinformatics resource manager
    Shah, Anuj R.
    Singhal, Mudita
    Klicker, Kyle R.
    Stephan, Eric G.
    Wiley, H. Steven
    Waters, Katrina M.
    BIOINFORMATICS, 2007, 23 (07) : 906 - 909
  • [4] Biomedical Informatics and Computational Biology for High-Throughput Data Analysis
    Shen, Bairong
    Ma, Jian
    Wang, Jiajun
    Wang, Junbai
    SCIENTIFIC WORLD JOURNAL, 2014,
  • [5] High-throughput sequencing for the study of bacterial pathogen biology
    McAdam, Paul R.
    Richardson, Emily J.
    Fitzgerald, J. Ross
    CURRENT OPINION IN MICROBIOLOGY, 2014, 19 : 106 - 113
  • [6] Tools for mapping high-throughput sequencing data
    Fonseca, Nuno A.
    Rung, Johan
    Brazma, Alvis
    Marioni, John C.
    BIOINFORMATICS, 2012, 28 (24) : 3169 - 3177
  • [7] Enabling high-throughput experimentation through high-throughput analysis
    Schafer, Wes
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 252
  • [8] TriageTools: tools for partitioning and prioritizing analysis of high-throughput sequencing data
    Fimereli, Danai
    Detours, Vincent
    Konopka, Tomasz
    NUCLEIC ACIDS RESEARCH, 2013, 41 (07)
  • [9] BacDive in 2019: bacterial phenotypic data for High-throughput biodiversity analysis
    Reimer, Lorenz Christian
    Vetcininova, Anna
    Carbasse, Joaquim Sarda
    Soehngen, Carola
    Gleim, Dorothea
    Ebeling, Christian
    Overmann, Joerg
    NUCLEIC ACIDS RESEARCH, 2019, 47 (D1) : D631 - D636
  • [10] Comparison of high-throughput sequencing data compression tools
    Numanagic, Ibrahim
    Bonfield, James K.
    Hach, Faraz
    Voges, Jan
    Ostermann, Joern
    Alberti, Claudio
    Mattavelli, Marco
    Sahinalp, S. Cenk
    NATURE METHODS, 2016, 13 (12) : 1005 - +