NON-COERCIVE SOLVABILITY OF SOME BOUNDARY VALUE PROBLEMS FOR SECOND ORDER ELLIPTIC DIFFERENTIAL-OPERATOR EQUATIONS WITH QUADRATIC COMPLEX PARAMETER

被引:0
|
作者
Aliev, Bahram A. [1 ]
Kerimov, Vugar Z. [2 ]
Yakubov, Yakov S. [3 ]
机构
[1] Azerbaijan State Pedag Univ, Inst Math & Mech, B Vahabzadeh 9, AZ-1141 Baku, Azerbaijan
[2] Azerbaijan State Pedag Univ, Baku, Azerbaijan
[3] Tel Aviv Univ, Tel Aviv, Israel
关键词
noncoercive solvability; differential-operator equation; isomorphism; elliptic equation; interpolation spaces; SPECTRAL PARAMETER;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In a separable Hilbert space H, solvability of boundary value problems for a second order elliptic differential-operator equation with quadratic complex parameter is investigated. The complex parameter enters linearly into a boundary condition and the boundary conditions are non-separable. An application of the obtained abstract results to elliptic boundary value problems is given.
引用
收藏
页码:190 / 205
页数:16
相关论文
共 50 条