Numerical Solution of the Upper-Convected Maxwell Model for Three-Dimensional Free Surface Flows

被引:0
|
作者
Tome, Murilo F. [2 ]
Silva, Renato A. P. [2 ]
Oishi, Cassio A. [2 ]
McKee, Sean [1 ]
机构
[1] Univ Strathclyde, Dept Math, Glasgow, Lanark, Scotland
[2] Univ Sao Paulo, Inst Ciencias Matemat & Computacao, Dept Matemat Aplicada & Estat, Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Viscoelastic flow; Upper-Convected Maxwell; finite difference; free surface; implicit techniques; Marker-and-Cell; FINITE-DIFFERENCE TECHNIQUE; EXTRUDATE SWELL RATIO; OLDROYD-B MODEL; VISCOELASTIC FLOWS; DIE-SWELL; SIMULATION; FLUID; DYNAMICS; CHANNEL; PLANE;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This work presents a finite difference technique for simulating three-dimensional free surface flows governed by the Upper-Convected Maxwell (UCM) constitutive equation. A Marker-and-Cell approach is employed to represent the fluid free surface and formulations for calculating the non-Newtonian stress tensor on solid boundaries are developed. The complete free surface stress conditions are employed. The momentum equation is solved by an implicit technique while the UCM constitutive equation is integrated by the explicit Euler method. The resulting equations are solved by the finite difference method on a 3D-staggered grid. By using an exact solution for fully developed flow inside a pipe, validation and convergence results are provided. Numerical results include the simulation of the transient extrudate swell and the comparison between jet buckling of UCM and Newtonian fluids.
引用
收藏
页码:367 / 395
页数:29
相关论文
共 50 条
  • [1] Three-dimensional flow of upper-convected Maxwell (UCM) fluid
    Hayat, T.
    Awais, M.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2011, 66 (07) : 875 - 884
  • [2] Three-dimensional upper-convected Maxwell nanofluid transport due to cross-diffusion and stratification: Numerical solutions
    Kumar, Ravinder
    Kumar, Rakesh
    Shehzad, Sabir Ali
    NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 2024, 85 (10) : 1365 - 1380
  • [3] Unsteady Axial Flows of Upper-Convected Maxwell Fluid in Pipe
    Yousef, M. Saleh
    Soleiman, M. H. M.
    Elshini, A. M. O.
    ARAB JOURNAL OF NUCLEAR SCIENCES AND APPLICATIONS, 2016, 49 (04): : 129 - 141
  • [4] Three dimensional MHD upper-convected Maxwell nanofluid flow with nonlinear radiative heat flux
    Bilal, M.
    Sagheer, M.
    Hussain, S.
    ALEXANDRIA ENGINEERING JOURNAL, 2018, 57 (03) : 1917 - 1925
  • [5] Numerical solution for Sakiadis flow of upper-convected Maxwell fluid using Cattaneo-Christov heat flux model
    Mushtaq, A.
    Abbasbandy, S.
    Mustafa, M.
    Hayat, T.
    Alsaedi, A.
    AIP ADVANCES, 2016, 6 (01):
  • [6] Galerkin least-squares approximations for upper-convected Maxwell fluid flows
    Frey, Sergio
    Fonseca, Cleiton
    Zinani, Flavia
    Naccache, Monica F.
    MECHANICS RESEARCH COMMUNICATIONS, 2010, 37 (07) : 666 - 671
  • [7] Towards a Numerical Benchmark for MHD Flows of Upper-Convected Maxwell (UCM) Fluids over a Porous Stretching Sheet
    Bataller, R. C.
    FDMP-FLUID DYNAMICS & MATERIALS PROCESSING, 2010, 6 (03): : 337 - 350
  • [8] Series solution for the upper-convected Maxwell fluid over a porous stretching plate
    Hayat, T.
    Abbas, Z.
    Sajid, M.
    PHYSICS LETTERS A, 2006, 358 (5-6) : 396 - 403
  • [9] Theoretical predictions for upper-convected Maxwell fluids in mixed shear and planar extensional flows
    Castellanos Campillo, Alberto
    Aguayo Vallejo, Juan Pablo
    Herrera Najera, Rafael
    Chavez Castellanos, Angel Enrique
    AIP ADVANCES, 2020, 10 (05)
  • [10] Numerical simulation of three-dimensional free surface flows
    Maronnier, V
    Picasso, M
    Rappaz, J
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2003, 42 (07) : 697 - 716