Chaotic Behaviour in a Three Element Memristor Based Circuit using Fourth Order Polynomial and PWL Nonlinearity

被引:0
|
作者
McCullough, M. H. [1 ]
Iu, H. H. C. [1 ]
Muthuswamy, B. [2 ]
机构
[1] Univ Western Australia, Sch Elect Elect & Comp Engn, 35 Stirling Highway, Crawley, WA 6009, Australia
[2] Milwaukee Sch Engn, Dept Elect Engn & Comp Sci, Milwaukee, WI 53202 USA
关键词
SCROLL;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This work presents a comparative study of two new chaotic systems obtained from a LCM (inductor-capacitor-memristor) chaotic circuit. We use a fourth order polynomial and piecewise linear nonlinearities for the memristance functions. These systems have only one equilibrium point and use only three fundamental circuit elements, nevertheless, they still generate 2-scroll and 4-scroll attractors. Chaotic behavior is illustrated using phase portraits, bifurcation diagrams and Lyapunov exponent spectra, revealing several chaotic attractors and notably similar dynamical behavior in both systems.
引用
收藏
页码:2743 / 2746
页数:4
相关论文
共 47 条
  • [1] Chaotic behavior in fractional-order memristor-based simplest chaotic circuit using fourth degree polynomial
    Lin Teng
    Herbert H. C. Iu
    Xingyuan Wang
    Xiukun Wang
    Nonlinear Dynamics, 2014, 77 : 231 - 241
  • [2] Chaotic behavior in fractional-order memristor-based simplest chaotic circuit using fourth degree polynomial
    Teng, Lin
    Iu, Herbert H. C.
    Wang, Xingyuan
    Wang, Xiukun
    NONLINEAR DYNAMICS, 2014, 77 (1-2) : 231 - 241
  • [3] Analysis of Fourth-order Chaotic Circuit Based on the Memristor Model for Wireless Communication
    Thomas, Sam
    Prakash, Savarimuthu
    Gopalan, Sankara Malliga
    IETE JOURNAL OF RESEARCH, 2023, 69 (05) : 2384 - 2391
  • [4] Chaotic behaviour of a fourth-order autonomous electric circuit
    Koliopanos, CL
    Kyprianidis, IM
    Stouboulos, IN
    Anagnostopoulos, AN
    Magafas, L
    CHAOS SOLITONS & FRACTALS, 2003, 16 (02) : 173 - 182
  • [5] Chaotic Dynamics from a Nonlinear Circuit based on Memristor with Cubic Nonlinearity
    Kyprianidis, I. M.
    Volos, Ch. K.
    Stouboulos, I. N.
    7TH INTERNATIONAL CONFERENCE OF THE BALKAN PHYSICAL UNION VOLS 1 AND 2, 2009, 1203 : 626 - 631
  • [6] Symmetry Breaking-Induced Dynamics for a Fourth-Order Memristor-Based Chaotic Circuit
    Léandre Kamdjeu Kengne
    Janarthanan Ramadoss
    Jacques Kengne
    Karthikeyan Rajagopal
    Circuits, Systems, and Signal Processing, 2022, 41 : 3706 - 3738
  • [7] Symmetry Breaking-Induced Dynamics for a Fourth-Order Memristor-Based Chaotic Circuit
    Kengne, Leandre Kamdjeu
    Ramadoss, Janarthanan
    Kengne, Jacques
    Rajagopal, Karthikeyan
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2022, 41 (07) : 3706 - 3738
  • [8] Secure Communication Using Memristor based Chaotic Circuit
    Saini, Sanju
    Saini, J. S.
    2014 INTERNATIONAL CONFERENCE ON PARALLEL, DISTRIBUTED AND GRID COMPUTING (PDGC), 2014, : 159 - 163
  • [9] Variable cubic-polynomial memristor based canonical Chua's chaotic circuit
    Van Ha Nguyen
    Nam, Sanguk
    Kim, Bookang
    Sohn, Keun Yong
    Song, Hanjung
    IEICE ELECTRONICS EXPRESS, 2016, 13 (03):
  • [10] Projective Synchronization of a Fifth-order Memristor-Based Chaotic Circuit
    Chi, Jun
    Liu, Hui
    Li, Zengyang
    PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 678 - 682