Reduced type-A carbohydrate-binding module interactions to cellulose I leads to improved endocellulase activity

被引:14
|
作者
Nemmaru, Bhargava
Ramirez, Nicholas [1 ]
Farino, Cindy J. [2 ]
Yarbrough, John M. [3 ]
Kravchenko, Nicholas [1 ]
Chundawat, Shishir P. S. [1 ]
机构
[1] Rutgers State Univ, Dept Chem & Biochem Engn, Piscataway, NJ 08854 USA
[2] Rutgers State Univ, Dept Biomed Engn, Piscataway, NJ USA
[3] Natl Renewable Energy Lab, Biosci Ctr, Golden, CO USA
基金
美国国家科学基金会;
关键词
carbohydrate‐ binding module; cellulose III; endocellulases; nonproductive binding; protein adsorption; quartz crystal microbalance with dissipation; QUARTZ-CRYSTAL MICROBALANCE; ENZYMATIC-HYDROLYSIS; CELLOBIOHYDROLASE-I; STRUCTURAL BASIS; AMINO-ACIDS; SURFACE; ENDOGLUCANASE; CELLULASES; ADSORPTION; PROCESSIVITY;
D O I
10.1002/bit.27637
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Dissociation of nonproductively bound cellulolytic enzymes from cellulose is hypothesized to be a key rate-limiting factor impeding cost-effective biomass conversion to fermentable sugars. However, the role of carbohydrate-binding modules (CBMs) in enabling nonproductive enzyme binding is not well understood. Here, we examine the subtle interplay of CBM binding and cellulose hydrolysis activity for three models type-A CBMs (Families 1, 3a, and 64) tethered to multifunctional endoglucanase (CelE) on two distinct cellulose allomorphs (i.e., cellulose I and III). We generated a small library of mutant CBMs with varying cellulose affinity, as determined by equilibrium binding assays, followed by monitoring cellulose hydrolysis activity of CelE-CBM fusion constructs. Finally, kinetic binding assays using quartz crystal microbalance with dissipation were employed to measure CBM adsorption and desorption rate constants k on and k off, respectively, towards nanocrystalline cellulose derived from both allomorphs. Overall, our results indicate that reduced CBM equilibrium binding affinity towards cellulose I alone, resulting from increased desorption rates ( k off) and reduced effective adsorption rates ( nk on), is correlated to overall improved endocellulase activity. Future studies could employ similar approaches to unravel the role of CBMs in nonproductive enzyme binding and develop improved cellulolytic enzymes for industrial applications.
引用
收藏
页码:1141 / 1151
页数:11
相关论文
共 50 条
  • [1] Structural basis for cellulose binding by the type A carbohydrate-binding module 64 of Spirochaeta thermophila
    Schiefner, Andre
    Angelov, Angel
    Liebl, Wolfgang
    Skerra, Arne
    PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2016, 84 (06) : 855 - 858
  • [2] A tripartite carbohydrate-binding module to functionalize cellulose nanocrystals
    Pelus, Angeline
    Bordes, Gaelle
    Barbe, Sophie
    Bouchiba, Younes
    Burnard, Callum
    Cortes, Juan
    Enjalbert, Brice
    Esque, Jeremy
    Estana, Alejandro
    Faure, Regis
    Henras, Anthony K.
    Heux, Stephanie
    Le Men, Claude
    Millard, Pierre
    Nouaille, Sebastien
    Perochon, Julien
    Toanen, Marion
    Truan, Gilles
    Verdier, Amandine
    Wagner, Camille
    Romeo, Yves
    Montanier, Cedric Y.
    BIOMATERIALS SCIENCE, 2021, 9 (22) : 7444 - 7455
  • [3] Oxidized Cellulose Binding to Allergens with a Carbohydrate-Binding Module Attenuates Allergic Reactions
    Shani, Nir
    Shani, Ziv
    Shoseyov, Oded
    Mruwat, Rufayda
    Shoseyovx, David
    JOURNAL OF IMMUNOLOGY, 2011, 186 (02): : 1240 - 1247
  • [4] Addition of a carbohydrate-binding module enhances cellulase penetration into cellulose substrates
    Vimalier Reyes-Ortiz
    Richard A Heins
    Gang Cheng
    Edward Y Kim
    Briana C Vernon
    Ryan B Elandt
    Paul D Adams
    Kenneth L Sale
    Masood Z Hadi
    Blake A Simmons
    Michael S Kent
    Danielle Tullman-Ercek
    Biotechnology for Biofuels, 6
  • [5] Addition of a carbohydrate-binding module enhances cellulase penetration into cellulose substrates
    Reyes-Ortiz, Vimalier
    Heins, Richard A.
    Cheng, Gang
    Kim, Edward Y.
    Vernon, Briana C.
    Elandt, Ryan B.
    Adams, Paul D.
    Sale, Kenneth L.
    Hadi, Masood Z.
    Simmons, Blake A.
    Kent, Michael S.
    Tullman-Ercek, Danielle
    BIOTECHNOLOGY FOR BIOFUELS, 2013, 6
  • [6] New insights into enzymatic hydrolysis of heterogeneous cellulose by using carbohydrate-binding module 3 containing GFP and carbohydrate-binding module 17 containing CFP
    Shuhong Gao
    Chun You
    Scott Renneckar
    Jie Bao
    Yi-Heng Percival Zhang
    Biotechnology for Biofuels, 7
  • [7] Supercharging Carbohydrate Binding Module Alone Enhances Endocellulase Thermostability, Binding, and Activity on Cellulosic Biomass
    DeChellis, Antonio
    Nemmaru, Bhargava
    Sammond, Deanne
    Douglass, Jenna
    Patil, Nivedita
    Reste, Olivia
    Chundawat, Shishir P. S.
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2024, 12 (09) : 3500 - 3516
  • [8] Molecular origins of reduced activity and binding commitment of processive cellulases and associated carbohydrate-binding proteins to cellulose III
    Chundawat, Shishir P. S.
    Nemmaru, Bhargava
    Hackl, Markus
    Brady, Sonia K.
    Hilton, Mark A.
    Johnson, Madeline M.
    Chang, Sungrok
    Lang, Matthew J.
    Huh, Hyun
    Lee, Sang-Hyuk
    Yarbrough, John M.
    Lopez, Cesar A.
    Gnanakaran, Sandrasegaram
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2021, 296
  • [9] Binding Preferences, Surface Attachment, Diffusivity, and Orientation of a Family 1 Carbohydrate-binding Module on Cellulose
    Nimlos, Mark R.
    Beckham, Gregg T.
    Matthews, James F.
    Bu, Lintao
    Himmel, Michael E.
    Crowley, Michael F.
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2012, 287 (24) : 20603 - 20612
  • [10] The impact of the carbohydrate-binding module on how a lytic polysaccharide monooxygenase modifies cellulose fibers
    Stopamo, Fredrik G.
    Sulaeva, Irina
    Budischowsky, David
    Rahikainen, Jenni
    Marjamaa, Kaisa
    Kruus, Kristiina
    Potthast, Antje
    Eijsink, Vincent G. H.
    Varnai, Aniko
    BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS, 2024, 17 (01):