Analysis of soil hydraulic and thermal properties for land surface modeling over the Tibetan Plateau

被引:60
|
作者
Zhao, Hong [1 ]
Zeng, Yijian [1 ]
Lv, Shaoning [1 ]
Su, Zhongbo [1 ]
机构
[1] Univ Twente, Dept Water Resources, Fac Geoinformat Sci & Earth Observat ITC, Hengelosestr 99, NL-7514 AE Enschede, Netherlands
关键词
PEDOTRANSFER FUNCTIONS; ORGANIC-MATTER; FIELD SITE; PART I; MOISTURE; CONDUCTIVITY; PARAMETERS; POROSITY; TEXTURE; SYSTEM;
D O I
10.5194/essd-10-1031-2018
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Soil information (e.g., soil texture and porosity) from existing soil datasets over the Tibetan Plateau (TP) is claimed to be inadequate and even inaccurate for determining soil hydraulic properties (SHP) and soil thermal properties (STP), hampering the understanding of the land surface process over TP. As the soil varies across three dominant climate zones (i.e., arid, semi-arid and subhumid) over the TP, the associated SHP and STP are expected to vary correspondingly. To obtain an explicit insight into the soil hydrothermal properties over the TP, in situ and laboratory measurements of over 30 soil property profiles were obtained across the climate zones. Results show that porosity and SHP and STP differ across the climate zones and strongly depend on soil texture. In particular, it is proposed that gravel impact on porosity and SHP and STP are both considered in the arid zone and in deep layers of the semi-arid zone. Parameterization schemes for porosity, SHP and STP are investigated and compared with measurements taken. To determine the SHP, including soil water retention curves (SWRCs) and hydraulic conductivities, the pedotransfer functions (PTFs) developed by Cosby et al. (1984) (for the Clapp-Hornberger model) and the continuous PTFs given by Wosten et al. (1999) (for the Van Genuchten-Mualem model) are recommended. The STP parameterization scheme proposed by Farouki (1981) based on the model of De Vries (1963) performed better across the TP than other schemes. Using the parameterization schemes mentioned above, the uncertainties of five existing regional and global soil datasets and their derived SHP and STP over the TP are quantified through comparison with in situ and laboratory measurements.
引用
收藏
页码:1031 / 1061
页数:31
相关论文
共 50 条
  • [1] Sensitivity Analysis of the Noah-MP Land Surface Model for Soil Hydrothermal Simulations Over the Tibetan Plateau
    Hu, Wei
    Ma, Weiqiang
    Yang, Zong-Liang
    Ma, Yaoming
    Xie, Zhipeng
    JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2023, 15 (03)
  • [2] Impact of alpine meadow degradation on soil hydraulic properties over the Qinghai-Tibetan Plateau
    Zeng, Chen
    Zhang, Fan
    Wang, Quanjiu
    Chen, Yingying
    Joswiak, Daniel R.
    JOURNAL OF HYDROLOGY, 2013, 478 : 148 - 156
  • [3] Some practical notes on the land surface modeling in the Tibetan Plateau
    Yang, K.
    Chen, Y. -Y.
    Qin, J.
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2009, 13 (05) : 687 - 701
  • [4] A Global High-Resolution Data Set of Soil Hydraulic and Thermal Properties for Land Surface Modeling
    Dai, Yongjiu
    Xin, Qinchuan
    Wei, Nan
    Zhang, Yonggen
    Wei Shangguan
    Yuan, Hua
    Zhang, Shupeng
    Liu, Shaofeng
    Lu, Xingjie
    JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2019, 11 (09) : 2996 - 3023
  • [5] Analysis of land surface parameters and turbulence characteristics over the Tibetan Plateau and surrounding region
    Wang, Yinjun
    Xu, Xiangde
    Liu, Huizhi
    Li, Yueqing
    Li, Yaohui
    Hu, Zeyong
    Gao, Xiaoqing
    Ma, Yaoming
    Sun, Jihua
    Lenschow, Donald H.
    Zhong, Shiyuan
    Zhou, Mingyu
    Bian, Xindi
    Zhao, Ping
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2016, 121 (16) : 9540 - 9560
  • [6] Quantifying Long-Term Land Surface and Root Zone Soil Moisture over Tibetan Plateau
    Zhuang, Ruodan
    Zeng, Yijian
    Manfreda, Salvatore
    Su, Zhongbo
    REMOTE SENSING, 2020, 12 (03)
  • [7] Comparison of Soil Water and Heat Transfer Modeling Over the Tibetan Plateau Using Two Community Land Surface Model (CLM) Versions
    Deng, Mingshan
    Meng, Xianhong
    Lyv, Yaqiong
    Zhao, Lin
    Li, Zhaoguo
    Hu, Zeyong
    Jing, Hui
    JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2020, 12 (10)
  • [8] Large Uncertainties in Precipitation Exert Considerable Impact on Land Surface Temperature Modeling Over the Tibetan Plateau
    Ma, Xiaogang
    Tian, Lei
    Jiang, Yaozhi
    Liang, Jiguang
    Tian, Jiaxin
    Zhou, Jianhong
    Shao, Changkun
    Yang, Kun
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2023, 128 (09)
  • [9] Modeling the influence of land surface flux on the regional climate of the Tibetan Plateau
    Weiqiang Ma
    Yaoming Ma
    Theoretical and Applied Climatology, 2016, 125 : 45 - 52
  • [10] Modeling the influence of land surface flux on the regional climate of the Tibetan Plateau
    Ma, Weiqiang
    Ma, Yaoming
    THEORETICAL AND APPLIED CLIMATOLOGY, 2016, 125 (1-2) : 45 - 52