ABSENCE OF GAPS IN A LOWER PART OF THE SPECTRUM OF A LAPLACIAN WITH FREQUENT ALTERNATION OF BOUNDARY CONDITIONS IN A STRIP

被引:2
|
作者
Borisov, D. I. [1 ,2 ,3 ]
机构
[1] RAS, Ufa Sci Ctr, Inst Math, Comp Ctr, Ufa, Russia
[2] Akhmulla Bashkir State Pedag Univ, Ufa, Russia
[3] Univ Hradec Kralove, Hradec Kralove, Czech Republic
基金
俄罗斯科学基金会;
关键词
Bethe-Sommerfeld conjecture; gap; periodic operator; alternation of boundary conditions; Laplacian; infinite strip; BETHE-SOMMERFELD CONJECTURE; NORM-RESOLVENT CONVERGENCE; DENSITY-OF-STATES; SCHRODINGER OPERATOR; ELLIPTIC-OPERATORS; HOMOGENIZATION; CURVE;
D O I
10.1134/S0040577918050057
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the Laplacian in a planar infinite straight strip with frequent alternation of boundary conditions. We show that for a sufficiently small alternation period, there are no gaps in a lower part of the spectrum. In terms of certain numbers and functions, we write an explicit upper bound for the period and an expression for the length of the lower part of the spectrum in which the absence of gaps is guaranteed.
引用
收藏
页码:690 / 703
页数:14
相关论文
共 17 条