Differentiating Tumor Progression from Pseudoprogression in Patients with Glioblastomas Using Diffusion Tensor Imaging and Dynamic Susceptibility Contrast MRI

被引:121
|
作者
Wang, S. [1 ]
Martinez-Lage, M. [2 ]
Sakai, Y. [1 ]
Chawla, S. [6 ]
Kim, S. G. [6 ]
Alonso-Basanta, M. [3 ]
Lustig, R. A. [3 ]
Brem, S. [4 ]
Mohan, S. [1 ]
Wolf, R. L. [1 ]
Desai, A. [5 ]
Poptani, H. [1 ]
机构
[1] Hosp Univ Penn, Dept Radiol, Philadelphia, PA 19104 USA
[2] Hosp Univ Penn, Dept Pathol & Lab Med, Div Neuroradiol, Philadelphia, PA 19104 USA
[3] Hosp Univ Penn, Dept Radiat Oncol, Philadelphia, PA 19104 USA
[4] Hosp Univ Penn, Dept Neurosurg, Philadelphia, PA 19104 USA
[5] Hosp Univ Penn, Dept Hematol Oncol, Philadelphia, PA 19104 USA
[6] NYU, Sch Med, Ctr Biomed Imaging, Dept Radiol, New York, NY USA
基金
美国国家卫生研究院;
关键词
TRUE PROGRESSION; VOLUME FRACTION; PERFUSION; TEMOZOLOMIDE; RADIOTHERAPY; RECURRENCE; MULTIFORME; BIOMARKER; SURVIVAL; CRITERIA;
D O I
10.3174/ajnr.A4474
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
BACKGROUND AND PURPOSE: Early assessment of treatment response is critical in patients with glioblastomas. A combination of DTI and DSC perfusion imaging parameters was evaluated to distinguish glioblastomas with true progression from mixed response and pseudoprogression. MATERIALS AND METHODS: Forty-one patients with glioblastomas exhibiting enhancing lesions within 6 months after completion of chemoradiation therapy were retrospectively studied. All patients underwent surgery after MR imaging and were histologically classified as having true progression (>75% tumor), mixed response (25%-75% tumor), or pseudoprogression (<25% tumor). Mean diffusivity, fractional anisotropy, linear anisotropy coefficient, planar anisotropy coefficient, spheric anisotropy coefficient, and maximum relative cerebral blood volume values were measured from the enhancing tissue. A multivariate logistic regression analysis was used to determine the best model for classification of true progression from mixed response or pseudoprogression. RESULTS: Significantly elevated maximum relative cerebral blood volume, fractional anisotropy, linear anisotropy coefficient, and planar anisotropy coefficient and decreased spheric anisotropy coefficient were observed in true progression compared with pseudoprogression (P < .05). There were also significant differences in maximum relative cerebral blood volume, fractional anisotropy, planar anisotropy coefficient, and spheric anisotropy coefficient measurements between mixed response and true progression groups. The best model to distinguish true progression from non-true progression (pseudoprogression and mixed) consisted of fractional anisotropy, linear anisotropy coefficient, and maximum relative cerebral blood volume, resulting in an area under the curve of 0.905. This model also differentiated true progression from mixed response with an area under the curve of 0.901. A combination of fractional anisotropy and maximum relative cerebral blood volume differentiated pseudoprogression from nonpseudoprogression (true progression and mixed) with an area under the curve of 0.807. CONCLUSIONS: DTI and DSC perfusion imaging can improve accuracy in assessing treatment response and may aid in individualized treatment of patients with glioblastomas.
引用
收藏
页码:28 / 36
页数:9
相关论文
共 50 条
  • [1] Differentiating Nonenhancing Grade II Gliomas from Grade III Gliomas Using Diffusion Tensor Imaging and Dynamic Susceptibility Contrast MRI
    Alkanhal, Hatham
    Das, Kumar
    Rathi, Nitika
    Syed, Khaja
    Poptani, Harish
    WORLD NEUROSURGERY, 2021, 146 : E555 - E564
  • [2] Diffusion kurtosis imaging combined with dynamic susceptibility contrast-enhanced MRI in differentiating high-grade glioma recurrence from pseudoprogression
    Shi, Wenwei
    Qu, Chongxiao
    Wang, Xiaochun
    Liang, Xiao
    Tan, Yan
    Zhang, Hui
    EUROPEAN JOURNAL OF RADIOLOGY, 2021, 144
  • [3] Diffusion tensor and dynamic susceptibility contrast MRI in glioblastoma
    Zikou, Anastasia K.
    Alexiou, George A.
    Kosta, Paraskevi
    Goussia, Ann
    Astrakas, Loukas
    Tsekeris, Periklis
    Voulgaris, Spyridon
    Malamou-Mitsi, Vasiliki
    Kyritsis, Athanasios P.
    Argyropoulou, Maria I.
    CLINICAL NEUROLOGY AND NEUROSURGERY, 2012, 114 (06) : 607 - 612
  • [4] Prognostication of overall survival in patients with brain metastases using diffusion tensor imaging and dynamic susceptibility contrast--enhanced MRI
    De Godoy, Laiz Laura
    Chen, Yin Jie
    Chawla, Sanjeev
    Viaene, Angela N.
    Wang, Sumei
    Loevner, Laurie A.
    Alonso-Basanta, Michelle
    Poptani, Harish
    Mohan, Suyash
    BRITISH JOURNAL OF RADIOLOGY, 2022, 95 (1140):
  • [5] Diagnostic Utility of Diffusion Tensor Imaging in Differentiating Glioblastomas from Brain Metastases
    Wang, S.
    Kim, S. J.
    Poptani, H.
    Woo, J. H.
    Mohan, S.
    Jin, R.
    Voluck, M. R.
    O'Rourke, D. M.
    Wolf, R. L.
    Melhem, E. R.
    Kim, S.
    AMERICAN JOURNAL OF NEURORADIOLOGY, 2014, 35 (05) : 928 - 934
  • [6] Assessment of the hypervascularized fraction of glioblastomas using a volume analysis of dynamic susceptibility contrast-enhanced MRI may help to identify pseudoprogression
    Roques, Margaux
    Catalaa, Isabelle
    Raveneau, Magali
    Attal, Justine
    Siegfried, Aurore
    Darcourt, Jean
    Cognard, Christophe
    de Champfleur, Nicolas Menjot
    Bonneville, Fabrice
    PLOS ONE, 2022, 17 (10):
  • [7] Differentiating high-grade glioma recurrence from pseudoprogression: Comparing diffusion kurtosis imaging and diffusion tensor imaging
    Wu, Xiao-feng
    Liang, Xiao
    Wang, Xiao-chun
    Qin, Jiang-bo
    Zhang, Lei
    Tan, Yan
    Zhang, Hui
    EUROPEAN JOURNAL OF RADIOLOGY, 2021, 135
  • [8] Role of FDG-PET/MRI, FDG-PET/CT, and Dynamic Susceptibility Contrast Perfusion MRI in Differentiating Radiation Necrosis from Tumor Recurrence in Glioblastomas
    Hojjati, Mojgan
    Badve, Chaitra
    Garg, Vasant
    Tatsuoka, Curtis
    Rogers, Lisa
    Sloan, Andrew
    Faulhaber, Peter
    Ros, Pablo R.
    Wolansky, Leo J.
    JOURNAL OF NEUROIMAGING, 2018, 28 (01) : 118 - 125
  • [9] Differentiation between Glioblastomas, Solitary Brain Metastases, and Primary Cerebral Lymphomas Using Diffusion Tensor and Dynamic Susceptibility Contrast-Enhanced MR Imaging
    Wang, S.
    Kim, S.
    Chawla, S.
    Wolf, R. L.
    Knipp, D. E.
    Vossough, A.
    O'Rourke, D. M.
    Judy, K. D.
    Poptani, H.
    Melhem, E. R.
    AMERICAN JOURNAL OF NEURORADIOLOGY, 2011, 32 (03) : 507 - 514
  • [10] Prognostic Value of Dynamic Susceptibility Contrast-Enhanced and Diffusion-Weighted MR Imaging in Patients with Glioblastomas
    Coban, G.
    Mohan, S.
    Kural, F.
    Wang, S.
    O'Rourke, D. M.
    Poptani, H.
    AMERICAN JOURNAL OF NEURORADIOLOGY, 2015, 36 (07) : 1247 - 1252