Towards a Fully Nonlinear Sharp Sobolev Trace Inequality

被引:5
|
作者
Case, Jeffrey S. [1 ]
Wang, Yi [2 ]
机构
[1] Penn State Univ, 109 McAllister Bldg, University Pk, PA 16802 USA
[2] Johns Hopkins Univ, Dept Math, Baltimore, MD 21218 USA
来源
JOURNAL OF MATHEMATICAL STUDY | 2020年 / 53卷 / 04期
关键词
conformally covariant operator; boundary operator; sigma(k)-curvature; Sobolev trace inequality; fully nonlinear PDE; ZETA-FUNCTION DETERMINANTS; CONSTANT MEAN-CURVATURE; SCALAR-FLAT METRICS; CONFORMAL GEOMETRY; YAMABE PROBLEM; 4-MANIFOLDS; MANIFOLDS; EXTREMALS; EQUATIONS; THEOREM;
D O I
10.4208/jms.v53n4.20.02
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We classify local minimizers of integral sigma(2) + closed integral H-2 among all conformally flat metrics in the Euclidean (n+1)-ball, n= 4 or n= 5, forwhich the boundary has unit volume, subject to an ellipticity assumption. We also classify local minimizers of the analogous functional in the critical dimension n+1=4. If minimizers exist, this implies a fully nonlinear sharp Sobolev trace inequality. Our proof is an adaptation of the Frank-Lieb proof of the sharp Sobolev inequality, and in particular does not rely on symmetrization or Obata-type arguments.
引用
收藏
页码:402 / 435
页数:34
相关论文
共 50 条