Automatic migration velocity analysis via deep learning

被引:0
|
作者
Ding, Chao [1 ,2 ]
Ma, Jianwei [1 ,2 ,3 ]
机构
[1] Harbin Inst Technol, Sch Math, Harbin, Peoples R China
[2] Harbin Inst Technol, Ctr Geophys, Harbin, Peoples R China
[3] Peking Univ, Sch Earth & Space Sci, Inst Artificial Intelligence, Beijing, Peoples R China
基金
美国国家科学基金会;
关键词
CONVOLUTIONAL NEURAL-NETWORK; TIME-MIGRATION; PICKING; CLASSIFICATION;
D O I
10.1190/GEO2020-0947.1
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Migration velocity analysis is a crucial seismic processing step that aims to translate residual moveout (RMO) in common-image gathers (CIGs) into velocity updates. How-ever, this is often an iterative process that requires migration and significant human effort in each iteration. To derive the RMO correction accurately and efficiently, we have devel-oped a new method that combines a newly designed RMO normalization and RMO identification. To make training successful, the former is designed to normalize the RMO from reflectors with different slopes and different depths to a nondipping case. To replace manually picking the velocity spectrum, the latter is arranged to recognize normalized frown and smile patterns in CIGs and translate them into velocity updates via convolutional neural networks. Two numerical and field data examples demonstrate that our method can effectively and efficiently flatten CIGs. This method improves the quality of the velocity updates where there exists manual-picking error in comparison with tradi-tional methods.
引用
收藏
页码:U135 / U153
页数:19
相关论文
共 50 条
  • [1] Automatic velocity analysis via shot profile migration
    Shen, Peng
    Symes, William W.
    GEOPHYSICS, 2008, 73 (05) : VE49 - VE59
  • [2] Migration Deconvolution via Deep Learning
    Manuel Ramón Vargas Avila
    Luana Nobre Osorio
    Júlio de Castro Vargas Fernandes
    André Bulcão
    Bruno Pereira-Dias
    Bruno de Souza Silva
    Pablo Machado Barros
    Luiz Landau
    Alexandre G. Evsukoff
    Pure and Applied Geophysics, 2021, 178 : 1677 - 1695
  • [3] Migration Deconvolution via Deep Learning
    Avila, Manuel Ramon Vargas
    Osorio, Luana Nobre
    de Castro Vargas Fernandes, Julio
    Bulcao, Andre
    Pereira-Dias, Bruno
    de Souza Silva, Bruno
    Barros, Pablo Machado
    Landau, Luiz
    Evsukoff, Alexandre G.
    PURE AND APPLIED GEOPHYSICS, 2021, 178 (05) : 1677 - 1695
  • [4] Automatic velocity analysis with reverse-time migration
    Weibull, Wiktor Waldemar
    Arntsen, Borge
    GEOPHYSICS, 2013, 78 (04) : S179 - S192
  • [5] Coherence measures in automatic time-migration velocity analysis
    Maciel, Jonathas S.
    Costa, Jesse C.
    Schleicher, Joerg
    JOURNAL OF GEOPHYSICS AND ENGINEERING, 2012, 9 (05) : 569 - 584
  • [6] Automatic classification of EEG signals via deep learning
    Wu, Tao
    Kong, Xiangzeng
    Wang, Yiwen
    Yang, Xue
    Liu, Jingxuan
    Qi, Jun
    2021 IEEE 19TH INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS (INDIN), 2021,
  • [7] Automatic Bug Triaging via Deep Reinforcement Learning
    Liu, Yong
    Qi, Xuexin
    Zhang, Jiali
    Li, Hui
    Ge, Xin
    Ai, Jun
    APPLIED SCIENCES-BASEL, 2022, 12 (07):
  • [8] Research on automatic picking of seismic velocity spectrum based on deep learning
    Cui JiaHao
    Yang Ping
    Wang HongQiang
    Bian Ce
    Hu Yang
    Pan HaiXia
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2022, 65 (12): : 4832 - 4845
  • [9] Deep learning in the automatic analysis of Czech text
    Strakova, Jana
    Straka, Milan
    Hajic, Jan
    Popel, Martin
    SLOVO A SLOVESNOST, 2019, 80 (04): : 306 - 327
  • [10] Deep Learning for Automatic IC Image Analysis
    Hong, Xuenong
    Cheng, Deruo
    Shi, Yiqiong
    Lin, Tong
    Gwee, Bah Hwee
    2018 IEEE 23RD INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING (DSP), 2018,