3D crack propagation with cohesive elements in the extended finite element method

被引:89
|
作者
Ferte, G. [1 ]
Massin, P. [1 ]
Moes, N. [2 ]
机构
[1] Univ Paris Saclay, IMSIA, EDF CNRS CEA ENSTA ParisTech, UMR 9219, 828 Blvd Marechaux, F-91762 Palaiseau, France
[2] Univ Nantes, Ecole Cent Nantes, CNRS, GeM UMR, 1 Rue Noe,BP 92101, F-44321 Nantes, France
关键词
X-FEM; Quasi-brittle fracture; Cohesive zone models; Size effect; DIRICHLET BOUNDARY-CONDITIONS; STRESS INTENSITY FACTORS; PHASE-FIELD MODELS; LEVEL SETS; UNREINFORCED CONCRETE; ANISOTROPIC MATERIALS; HAMILTON-JACOBI; 2ND GRADIENT; FRACTURE; GROWTH;
D O I
10.1016/j.cma.2015.11.018
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A model is presented that accurately describes brittle failure in the presence of cohesive forces, with a particular focus on the prediction of non planar crack paths. In comparison with earlier literature, the originality of the procedure lies in the a posteriori computation of the crack advance from the equilibrium, instead of a most common determination beforehand from the stress state ahead of the front. To this aim, a robust way of introducing brittle non-smooth cohesive laws in the X-FEM is presented. Then the a posteriori update algorithm of the crack front is detailed. The crack deflection angle is computed from cohesive quantities exclusively, by introducing equivalent stress intensity factors. The procedure shows good accordance with experiments from the literature. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:347 / 374
页数:28
相关论文
共 50 条
  • [2] FINITE ELEMENT MODELLING OF COMPLEX 3D STATIC AND DYNAMIC CRACK PROPAGATION BY EMBEDDING COHESIVE ELEMENTS IN ABAQUS
    Su, Xiangting
    Yang, Zhenjun
    Liu, Guohua
    ACTA MECHANICA SOLIDA SINICA, 2010, 23 (03) : 271 - 282
  • [3] Finite element modelling of complex 3D static and dynamic crack propagation by embedding cohesive elements in Abaqus
    Su X.
    Yang Z.
    Liu G.
    Acta Mechanica Solida Sinica, 2010, 23 (3) : 271 - 282
  • [4] 3D cohesive crack propagation using hybrid-Trefftz finite elements
    Pearce, C. J.
    Edwards, G.
    Kaczmarczyk, L.
    COMPUTATIONAL MODELLING OF CONCRETE STRUCTURES, VOL 1, 2014, : 531 - 539
  • [5] Extended finite element method for cohesive crack growth
    Moës, N
    Belytschko, T
    ENGINEERING FRACTURE MECHANICS, 2002, 69 (07) : 813 - 833
  • [6] 3D Dynamic Crack Propagation by the Extended Finite Element Method and a Gradient-Enhanced Damage Model
    Pezeshki, M.
    Loehnert, S.
    Wriggers, P.
    Guidault, P. A.
    Baranger, E.
    MULTISCALE MODELING OF HETEROGENEOUS STRUCTURES, 2018, 86 : 277 - 299
  • [7] Error-controlled adaptive extended finite element method for 3D linear elastic crack propagation
    Jin, Y.
    Gonzalez-Estrada, O. A.
    Pierard, O.
    Bordas, S. P. A.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 318 : 319 - 348
  • [8] Verification of a cohesive model-based extended finite element method for ductile crack propagation
    Li, Huan
    Li, Lei
    Fan, Jiangkun
    Yue, Zhufeng
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2021, 44 (03) : 762 - 775
  • [9] A multiscale extended finite element method for crack propagation
    Guidault, P. -A.
    Allix, O.
    Champaney, L.
    Cornuault, C.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2008, 197 (05) : 381 - 399
  • [10] Application of the Extended Finite Element Method in Crack Propagation
    Di Y.
    Wang H.
    Dong L.
    Xing Z.
    Wang X.
    1600, Cailiao Daobaoshe/ Materials Review (31): : 70 - 74and85