Bounds on corner entanglement in quantum critical states

被引:33
|
作者
Bueno, Pablo [1 ]
Witczak-Krempa, William [2 ]
机构
[1] Katholieke Univ Leuven, Inst Theoret Fys, Celestijnenlaan 200D, B-3001 Leuven, Belgium
[2] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
TOPOLOGICAL ORDER; FIELD-THEORIES; ENTROPY;
D O I
10.1103/PhysRevB.93.045131
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The entanglement entropy in many gapless quantum systems receives a contribution from the corners in the entangling surface in 2+1d, which is characterized by a universal function a(theta) depending on the opening angle theta, and contains pertinent low energy information. For conformal field theories (CFTs), the leading expansion coefficient in the smooth limit theta -> pi yields the stress tensor two-point function coefficient C-T. Little is known about a(theta) beyond that limit. Here, we show that the next term in the smooth limit expansion contains information beyond the two- and three-point correlators of the stress tensor. We conjecture that it encodes four-point data, making it much richer. Further, we establish strong constraints on this and higher-order smooth-limit coefficients. We also show that a(theta) is lower-bounded by a nontrivial function multiplied by the central charge C-T, e.g., a(pi/2) >= (pi(2) ln 2)C-T/6. This bound for 90-degree corners is nearly saturated by all known results, including recent numerics for the interacting Wilson-Fisher quantum critical points (QCPs). A bound is also given for the Renyi entropies. We illustrate our findings using O(N) QCPs, free boson and Dirac fermion CFTs, strongly coupled holographic ones, and other models. Exact results are also given for Lifshitz quantum critical points, and for conical singularities in 3+1d.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Bounds on bipartitely shared entanglement reduced from superposed tripartite quantum states
    C. S. Yu
    X. X. Yi
    H. S. Song
    The European Physical Journal D, 2008, 49 : 273 - 278
  • [2] Bounds on bipartitely shared entanglement reduced from superposed tripartite quantum states
    Yu, C. S.
    Yi, X. X.
    Song, H. S.
    EUROPEAN PHYSICAL JOURNAL D, 2008, 49 (02): : 273 - 278
  • [3] Quantum critical universality and singular corner entanglement entropy of bilayer Heisenberg-Ising model
    Devakul, Trithep
    Singh, Rajiv R. P.
    PHYSICAL REVIEW B, 2014, 90 (06)
  • [4] Entanglement Bounds in the XXZ Quantum Spin Chain
    H. Abdul-Rahman
    C. Fischbacher
    G. Stolz
    Annales Henri Poincaré, 2020, 21 : 2327 - 2366
  • [5] Entanglement bounds on the performance of quantum computing architectures
    Eldredge, Zachary
    Zhou, Leo
    Bapat, Aniruddha
    Garrison, James R.
    Deshpande, Abhinav
    Chong, Frederic T.
    Gorshkov, Alexey, V
    PHYSICAL REVIEW RESEARCH, 2020, 2 (03):
  • [6] Bounds on mixedness and entanglement of quantum teleportation resources
    Paulson, K. G.
    Satyanarayana, S. V. M.
    PHYSICS LETTERS A, 2017, 381 (13) : 1134 - 1137
  • [7] Entanglement and the lower bounds on the speed of quantum evolution
    Borras, A.
    Casas, M.
    Plastino, A. R.
    Plastino, A.
    PHYSICAL REVIEW A, 2006, 74 (02):
  • [8] Entanglement Bounds in the XXZ Quantum Spin Chain
    Abdul-Rahman, H.
    Fischbacher, C.
    Stolz, G.
    ANNALES HENRI POINCARE, 2020, 21 (07): : 2327 - 2366
  • [9] Quantum Discord Bounds the Amount of Distributed Entanglement
    Chuan, T. K.
    Maillard, J.
    Modi, K.
    Paterek, T.
    Paternostro, M.
    Piani, M.
    PHYSICAL REVIEW LETTERS, 2012, 109 (07)
  • [10] Entanglement bounds of tripartite squeezed thermal states
    Chen, XY
    PHYSICS LETTERS A, 2005, 335 (2-3) : 121 - 126