The distribution of the maximum vertex degree in random planar maps

被引:31
|
作者
Gao, ZC [1 ]
Wormald, NC
机构
[1] Carleton Univ, Dept Math & Stat, Ottawa, ON K1S 5B6, Canada
[2] Univ Melbourne, Dept Math, Parkville, Vic 3052, Australia
基金
澳大利亚研究理事会;
关键词
D O I
10.1006/jcta.1999.3006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We determine the limiting distribution of the maximum vertex degree Delta(n) in a random triangulation of an n-gon, and show that it is the same as that of the maximum of n independent identically distributed random variables G(2), where G(2) is the sum of two independent geometric(1/2) random variables. This answers affirmatively a question of Devroye. Flajolet, Hurtado, Noy and Steiger, who gave much weaker almost sure bounds on Delta(n). An interesting consequence of this is that the asymptotic probability that a random triangulation has a unique vertex with maximum degree is about 0.72. We also give an analogous result for random planar maps in general. (C) 2000 Academic Press.
引用
收藏
页码:201 / 230
页数:30
相关论文
共 50 条
  • [1] On the maximum degree of a random planar graph
    McDiarmid, Colin
    Reed, Bruce
    COMBINATORICS PROBABILITY & COMPUTING, 2008, 17 (04): : 591 - 601
  • [2] The maximum degree of random planar graphs
    Drmota, M.
    Gimenez, O.
    Noy, M.
    Panagiotou, K.
    Steger, A.
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2014, 109 : 892 - 920
  • [3] Concentration of maximum degree in random planar graphs
    Kang, Mihyun
    Missethan, Michael
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2022, 156 : 310 - 342
  • [5] On the Degree Distribution of Random Planar Graphs
    Panagiotou, Konstantinos
    Steger, Angelika
    PROCEEDINGS OF THE TWENTY-SECOND ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2011, : 1198 - 1210
  • [6] The six-vertex model on random planar maps revisited
    Price, Andrew Elvey
    Zinn-Justin, Paul
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2023, 196
  • [7] Degree distribution in random planar graphs
    Drmota, Michael
    Gimenez, Omer
    Noy, Marc
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2011, 118 (07) : 2102 - 2130
  • [8] THE DISTRIBUTION OF THE MAXIMUM DEGREE OF A RANDOM GRAPH
    BOLLOBAS, B
    DISCRETE MATHEMATICS, 1980, 32 (02) : 201 - 203
  • [9] A Note on the Vertex Degree Distribution of Random Intersection Graphs
    Mindaugas Bloznelis
    Lithuanian Mathematical Journal, 2020, 60 : 452 - 455
  • [10] A Note on the Vertex Degree Distribution of Random Intersection Graphs
    Bloznelis, Mindaugas
    LITHUANIAN MATHEMATICAL JOURNAL, 2020, 60 (04) : 452 - 455