Carlitz-Hayes plus Anderson's epsilon

被引:0
|
作者
Bae, SH [1 ]
Yin, LS
机构
[1] Korea Adv Inst Sci & Technol, Dept Math, Taejon 305701, South Korea
[2] Tsing Hua Univ, Dept Math Sci, Beijing 100084, Peoples R China
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2004年 / 571卷
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let k be the field of rational functions over the finite field of q elements. Let k(ac) be an algebraic closure of k. The maximal abelian extension k(ab) of k in k(ac) and its Galois group over k have been described in the obvious manner by Hayes by developing ideas of Carlitz. Let k(ab+epsilon) be the compositum of all sub fields of k(ac) which are Kummer (q-1)-extensions over k(ab) and are Galois over k. In this paper we exhibit an explicit description of the field k(ab+epsilon) and the Galois group of k(ab+epsilon/k). Our main motivation is the recent work of Anderson about the similar question over the rational number field.
引用
收藏
页码:19 / 37
页数:19
相关论文
共 50 条