Electrical Circuits Described by General Fractional Conformable Derivative

被引:5
|
作者
Kahouli, Omar [1 ,2 ]
Elloumi, Mourad [3 ,4 ]
Naifar, Omar [2 ,5 ]
Alsaif, Haitham [6 ]
Kahouli, Bassem [7 ]
Bouteraa, Yassine [8 ]
机构
[1] Univ Hail, Community Coll, Dept Elect Engn, Hail, Saudi Arabia
[2] Univ Sfax, Natl Sch Engn, Control & Energy Management Lab, Sfax, Tunisia
[3] Univ Sfax, Natl Sch Engn Sfax, Lab Sci & Technol Automat Control & Comp Engn, Sfax, Tunisia
[4] Univ Gafsa, Fac Sci Gafsa, Gafsa, Tunisia
[5] Univ Kairouan, Higher Inst Appl Sci & Technol Kairouan, Kairouan, Tunisia
[6] Univ Hail, Dept Elect Engn, Coll Engn, Hail, Saudi Arabia
[7] Univ Hail, Dept Management Informat Syst, Community Coll, Hail, Saudi Arabia
[8] Prince Sattam Bin Abdulaziz Univ, Coll Comp Engn & Sci, Dept Comp Engn, Al Kharj, Saudi Arabia
来源
关键词
general fractional conformable derivative; conformable derivative; electrical RC circuit; electrical LC circuit; electrical RLC circuits; MEMORY; MODEL;
D O I
10.3389/fenrg.2022.851070
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The general fractional conformable derivative (GCD) and its attributes have been described by researchers in the recent times. Compared with other fractional derivative definitions, this derivative presents a generalization of the conformable derivative and follows the same derivation formulae. For electrical circuits, such as RLC, RC, and LC, we obtain a new class of fractional-order differential equations using this novel derivative, The use of GCD to depict electrical circuits has been shown to be more adaptable and lucrative than the usual conformable derivative.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Electrical circuits described by fractional conformable derivative
    Martinez, L.
    Rosales, J. J.
    Carreno, C. A.
    Lozano, J. M.
    INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, 2018, 46 (05) : 1091 - 1100
  • [2] Electrical circuits described by a fractional derivative with regular Kernel
    Gomez-Aguilar, J. F.
    Cordova-Fraga, T.
    Escalante-Martinez, J. E.
    Calderon-Ramon, C.
    Escobar-Jimenez, R. F.
    REVISTA MEXICANA DE FISICA, 2016, 62 (02) : 144 - 154
  • [3] Analytical solutions of electrical circuits described by fractional conformable derivatives in Liouville-Caputo sense
    Morales-Delgado, V. F.
    Gomez-Aguilar, J. F.
    Taneco-Hernandez, M. A.
    AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2018, 85 : 108 - 117
  • [4] General conformable fractional derivative and its physical interpretation
    Dazhi Zhao
    Maokang Luo
    Calcolo, 2017, 54 : 903 - 917
  • [5] General conformable fractional derivative and its physical interpretation
    Zhao, Dazhi
    Luo, Maokang
    CALCOLO, 2017, 54 (03) : 903 - 917
  • [6] Analytical and numerical solutions of electrical circuits described by fractional derivatives
    Gomez-Aguilar, J. F.
    Yepez-Martinez, H.
    Escobar-Jimenez, R. F.
    Astorga-Zaragoza, C. M.
    Reyes-Reyes, J.
    APPLIED MATHEMATICAL MODELLING, 2016, 40 (21-22) : 9079 - 9094
  • [7] Analysis of Fractional Electrical Circuit Using Caputo and Conformable Derivative Definitions
    Piotrowska, Ewa
    Rogowski, Krzysztof
    NON-INTEGER ORDER CALCULUS AND ITS APPLICATIONS, 2019, 496 : 183 - 194
  • [8] Fractional Newton mechanics with conformable fractional derivative
    Chung, Won Sang
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 290 : 150 - 158
  • [9] On The Fractional Domain Analysis of HP TiO2 Memristor Based Circuits with Fractional Conformable Derivative
    Banchuin, Rawid
    COGENT ENGINEERING, 2021, 8 (01):
  • [10] Conformable fractional derivative in commutative algebras
    Shpakivskyi V.S.
    Journal of Mathematical Sciences, 2023, 274 (3) : 392 - 402