Superconvergent spline quasi-interpolants and an application to numerical integration

被引:3
|
作者
Allouch, C. [1 ]
Boujraf, A. [2 ]
Tahrichi, M. [2 ]
机构
[1] Multidisciplinary Fac Nador, MASI Lab, Nador, Morocco
[2] Univ Mohammed 1, LANO Lab, FSO, Oujda, Morocco
关键词
B-spline; Superconvergent quasi-interpolant; Quadrature formula; PARTITIONS; ORDER;
D O I
10.1016/j.matcom.2016.09.014
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we present a new technique to get superconvergence phenomenon of spline quasi-interpolants at the knots of the partition. This method gives rise to good approximation not only at these knots but also on the whole domain of definition. Moreover, we give an application to numerical integration. Numerical results are given to illustrate the theoretical ones. (C) 2016 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:90 / 108
页数:19
相关论文
共 50 条
  • [1] Superconvergent quadratic spline quasi-interpolants on Powell-Sabin partitions
    Sbibih, D.
    Serghini, A.
    Tijini, A.
    APPLIED NUMERICAL MATHEMATICS, 2015, 87 : 74 - 86
  • [2] Generalized spline quasi-interpolants and applications to numerical analysis
    Lamnii, A.
    Nour, M. Y.
    Sbibih, D.
    Zidna, A.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 408
  • [3] Numerical integration based on trivariate C 2 quartic spline quasi-interpolants
    Dagnino, Catterina
    Lamberti, Paola
    Remogna, Sara
    BIT NUMERICAL MATHEMATICS, 2013, 53 (04) : 873 - 896
  • [5] Numerical integration based on bivariate quadratic spline quasi-interpolants on bounded domains
    Paola Lamberti
    BIT Numerical Mathematics, 2009, 49 : 565 - 588
  • [6] Superconvergent trivariate quadratic spline quasi-interpolants on Worsey-Piper split
    Sbibih, D.
    Serghini, A.
    Tijini, A.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 276 : 117 - 128
  • [7] Numerical integration based on trivariate C2 quartic spline quasi-interpolants
    Catterina Dagnino
    Paola Lamberti
    Sara Remogna
    BIT Numerical Mathematics, 2013, 53 : 873 - 896
  • [8] Superconvergent Nystrom Method Based on Spline Quasi-Interpolants for Nonlinear Urysohn Integral Equations
    Remogna, Sara
    Sbibih, Driss
    Tahrichi, Mohamed
    MATHEMATICS, 2023, 11 (14)
  • [9] Bivariate Simplex Spline Quasi-Interpolants
    D.Sbibih
    A.Serghini
    A.Tijini
    NumericalMathematics:Theory,MethodsandApplications, 2010, (01) : 97 - 118
  • [10] A Family of Spline Quasi-Interpolants on the Sphere
    O. Nouisser
    D. Sbibih
    Paul Sablonnière
    Numerical Algorithms, 2003, 33 : 399 - 413