LIEB-ROBINSON BOUNDS AND QUASI-LOCALITY FOR THE DYNAMICS OF MANY-BODY QUANTUM SYSTEMS

被引:0
|
作者
Sims, Robert [1 ]
机构
[1] Univ Arizona, Dept Math, Tucson, AZ 85721 USA
来源
MATHEMATICAL RESULTS IN QUANTUM PHYSICS | 2011年
基金
美国国家科学基金会;
关键词
Lieb-Robinson bounds; quasi-locality; quantum dynamics; PERTURBATION; PROPAGATION; VELOCITY;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We review a recently proven Lieb-Robinson bound for general, many-body quantum systems with bounded interactions. Several basic examples are discussed as well as the connection between commutator estimates and quasi-locality.
引用
收藏
页码:95 / 106
页数:12
相关论文
共 50 条
  • [1] Lieb-Robinson Bounds in Quantum Many-Body Physics
    Nachtergaele, Bruno
    Sims, Robert
    ENTROPY AND THE QUANTUM, 2010, 529 : 141 - +
  • [2] Lieb-Robinson Bounds and Strongly Continuous Dynamics for a Class of Many-Body Fermion Systems in Rd
    Gebert, Martin
    Nachtergaele, Bruno
    Reschke, Jake
    Sims, Robert
    ANNALES HENRI POINCARE, 2020, 21 (11): : 3609 - 3637
  • [3] Quasi-locality bounds for quantum lattice systems. I. Lieb-Robinson bounds, quasi-local maps, and spectral flow automorphisms
    Nachtergaele, Bruno
    Sims, Robert
    Young, Amanda
    JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (06)
  • [4] Lieb-Robinson bounds imply locality of interactions
    Wilming, Henrik
    Werner, Albert H.
    PHYSICAL REVIEW B, 2022, 105 (12)
  • [5] Lieb-Robinson Bound and Locality for General Markovian Quantum Dynamics
    Poulin, David
    PHYSICAL REVIEW LETTERS, 2010, 104 (19)
  • [6] LIEB-ROBINSON BOUNDS AND THE EXISTENCE OF INFINITE SYSTEM DYNAMICS
    Nachtergaele, Bruno
    XVITH INTERNATIONAL CONGRESS ON MATHEMATICAL PHYSICS, 2010, : 391 - 396
  • [7] Lieb-Robinson Bounds and Existence of the Thermodynamic Limit for a Class of Irreversible Quantum Dynamics
    Nachtergaele, Bruno
    Vershynina, Anna
    Zagrebnov, Valentin A.
    ENTROPY AND THE QUANTUM II, 2011, 552 : 161 - +
  • [8] Lieb-Robinson Bounds for Harmonic and Anharmonic Lattice Systems
    Nachtergaele, Bruno
    Raz, Hillel
    Schlein, Benjamin
    Sims, Robert
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 286 (03) : 1073 - 1098
  • [9] Lieb-Robinson Bounds for Harmonic and Anharmonic Lattice Systems
    Bruno Nachtergaele
    Hillel Raz
    Benjamin Schlein
    Robert Sims
    Communications in Mathematical Physics, 2009, 286 : 1073 - 1098
  • [10] Improved Lieb-Robinson bound for many-body Hamiltonians with power-law interactions
    Else, Dominic, V
    Machado, Francisco
    Nayak, Chetan
    Yao, Norman Y.
    PHYSICAL REVIEW A, 2020, 101 (02)