A NOTE ON STOCHASTIC INTEGRATION WITH RESPECT TO OPTIONAL SEMIMARTINGALES

被引:3
|
作者
Kuehn, Christoph [1 ]
Stroh, Maximilian [1 ]
机构
[1] Univ Frankfurt, Frankfurt MathFinance Inst, D-60054 Frankfurt, Germany
关键词
stochastic integration theory; optional semimartingales; dynamic portfolio choice;
D O I
10.1214/ECP.v14-1465
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this note we discuss the extension of the elementary stochastic Ito-integral w.r.t. an optional semimartingale. The paths of an optional semimartingale possess limits from the left and from the right, but may have double jumps. This leads to quite interesting phenomena in integration theory. We find a mathematically tractable domain of general integrands. The simple integrands are embedded into this domain. Then, we characterize the integral as the unique continuous and linear extension of the elementary integral and show completeness of the space of integrals. Thus our integral possesses desirable properties to model dynamic trading gains in mathematical finance when security price processes follow optional semimartingales.
引用
收藏
页码:192 / 201
页数:10
相关论文
共 50 条