共 3 条
Sleep-like slow oscillations improve visual classification through synaptic homeostasis and memory association in a thalamo-cortical model
被引:23
|作者:
Capone, Cristiano
[1
]
Pastorelli, Elena
[1
,2
]
Golosio, Bruno
[3
,4
]
Paolucci, Pier Stanislao
[1
]
机构:
[1] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy
[2] Sapienza Univ Rome, PhD Program Behav Neurosci, Rome, Italy
[3] Univ Cagliari, Dipartimento Fis, Cagliari, Italy
[4] Ist Nazl Fis Nucl, Sez Cagliari, Cagliari, Italy
基金:
欧盟地平线“2020”;
关键词:
CONSOLIDATION;
D O I:
10.1038/s41598-019-45525-0
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
The occurrence of sleep passed through the evolutionary sieve and is widespread in animal species. Sleep is known to be beneficial to cognitive and mnemonic tasks, while chronic sleep deprivation is detrimental. Despite the importance of the phenomenon, a complete understanding of its functions and underlying mechanisms is still lacking. In this paper, we show interesting effects of deep-sleep-like slow oscillation activity on a simplified thalamo-cortical model which is trained to encode, retrieve and classify images of handwritten digits. During slow oscillations, spike-timing-dependent-plasticity (STDP) produces a differential homeostatic process. It is characterized by both a specific unsupervised enhancement of connections among groups of neurons associated to instances of the same class (digit) and a simultaneous down-regulation of stronger synapses created by the training. This hierarchical organization of post-sleep internal representations favours higher performances in retrieval and classification tasks. The mechanism is based on the interaction between top-down cortico-thalamic predictions and bottom-up thalamo-cortical projections during deep-sleep-like slow oscillations. Indeed, when learned patterns are replayed during sleep, cortico-thalamo-cortical connections favour the activation of other neurons coding for similar thalamic inputs, promoting their association. Such mechanism hints at possible applications to artificial learning systems.
引用
收藏
页数:11
相关论文