Synthesis and Photoelectrochemical Properties of Efficient Photoanodes Built from Fe2O3/NiO Heterostructures

被引:11
|
作者
Fan, Weiqiang [1 ]
Zhang, Chao [1 ]
Bai, Hongye [1 ]
Yu, Xiaoqiang [1 ]
Shi, Weidong [1 ]
机构
[1] Jiangsu Univ, Sch Chem & Chem Engn, Zhenjiang 212013, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Heterostructures; Electrochemistry; Iron; Nickel; Photoanodes; LITHIUM-ION BATTERIES; ALPHA-FE2O3; ELECTRODES; HYDROGEN-PRODUCTION; WATER OXIDATION; THIN-FILMS; HEMATITE; PERFORMANCE; GENERATION; OXIDE; NI(OH)(2);
D O I
10.1002/ejic.201402416
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
New photoanodes built from Fe2O3/NiO heterostructures were successfully prepared, and their morphologies and structures were systematically characterized by SEM, XRD, TEM, and HRTEM. The photoelectrochemical (PEC) properties of the heterostructures, including transient photocurrent density versus time (I-t) curves, photocurrent versus potential (I-V) curves, and incident-photon-to-current efficiency (IPCE) curves, were also researched in depth. The p-n heterostructure composed of NiO and Fe2O3 results in the improvement of electron transfer between Fe2O3 and NiO.
引用
收藏
页码:3608 / 3613
页数:6
相关论文
共 50 条
  • [1] Fe2O3 and Fe2O3/Ni(OH)2 photoanodes for highly efficient photoelectrochemical water splitting and urea oxidation
    Karrab, Assia
    Lecarme, Laureline
    Lepretre, Jean Claude
    Nourdine, Ali
    Deseure, Jonathan
    Ammar, Salah
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2022, 128 (06):
  • [2] Fe2O3 and Fe2O3/Ni(OH)2 photoanodes for highly efficient photoelectrochemical water splitting and urea oxidation
    Assia Karrab
    Lauréline Lecarme
    Jean Claude Lepretre
    Ali Nourdine
    Jonathan Deseure
    Salah Ammar
    Applied Physics A, 2022, 128
  • [3] Plasmonic layer enhanced photoelectrochemical response of Fe2O3 photoanodes
    Verma, Anuradha
    Srivastav, Anupam
    Banerjee, Anamika
    Sharma, Dipika
    Sharma, Shailja
    Singh, Udai Bhan
    Satsangi, Vibha Rani
    Shrivastav, Rohit
    Avasthi, Devesh Kumar
    Dass, Sahab
    JOURNAL OF POWER SOURCES, 2016, 315 : 152 - 160
  • [4] Hydrothermal and electrochemical synthesis of Fe2O3 and ZnFe2O4/Fe2O3 photoanodes for photoelectrochemical applications: An experimental and theoretical study
    Wannapop, Surangkana
    Kansaard, Thitirat
    Singha, Thareerat
    Sudyoadsuk, Taweesak
    Smith, Siwaporn Meejoo
    Somdee, Asanee
    INORGANIC CHEMISTRY COMMUNICATIONS, 2024, 168
  • [5] Synthesis and Photoelectrochemical Properties of Fe2O3/ZnFe2O4 Composite Photoanodes for Use in Solar Water Oxidation
    McDonald, Kenneth J.
    Choi, Kyoung-Shin
    CHEMISTRY OF MATERIALS, 2011, 23 (21) : 4863 - 4869
  • [6] Convenient synthesis of highly oriented α-Fe2O3 microcone arrays with efficient photoelectrochemical properties
    Liu, Gang
    Ahmed, Alfadil Yousif
    Liu, Wei
    Xia, Weiwei
    He, Junhui
    Zeng, Xianghua
    JOURNAL OF CRYSTAL GROWTH, 2021, 573
  • [7] Nanostructured Ti-doped hematite (α-Fe2O3) photoanodes for efficient photoelectrochemical water oxidation
    Lee, Myeong Hwan
    Park, Jong Hoon
    Han, Hyun Soo
    Song, Hee Jo
    Cho, In Sun
    Noh, Jun Hong
    Hong, Kug Sun
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (30) : 17501 - 17507
  • [8] Photothermal-boosted polaron transport in Fe2O3 photoanodes for efficient photoelectrochemical water splitting
    Hu, Xiaoqin
    Huang, Jing
    Cao, Yu
    He, Bing
    Cui, Xun
    Zhu, Yunhai
    Wang, Yang
    Chen, Yihuang
    Yang, Yingkui
    Li, Zhen
    Liu, Xueqin
    CARBON ENERGY, 2023, 5 (09)
  • [9] Photoelectrochemical Properties of α-Fe2O3:Sn/CuFe2O4 Composite Nanorod Arrays as Photoanodes
    Wu, Kun
    Liu, Chunting
    Shang, Mingwei
    Zhu, Qianqian
    Dong, Lifeng
    NANOTECHNOLOGY (GENERAL) - 223RD ECS MEETING, 2013, 53 (22): : 49 - 56
  • [10] PHOTOELECTROCHEMICAL HYDROGEN PRODUCTION USING TiO2 and Fe2O3 PHOTOANODES
    Krysa, J.
    Zlamal, M.
    Kment, S.
    Hubicka, Z.
    PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON CHEMICAL TECHNOLOGY, 1ST EDITION, 2016, : 171 - 175