Graph Kernels Exploiting Weisfeiler-Lehman Graph Isomorphism Test Extensions

被引:0
|
作者
Martino, Giovanni Da San [1 ]
Navarin, Nicolo [1 ]
Sperduti, Alessandro [1 ]
机构
[1] Univ Padua, Dept Math, Padua, Italy
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we present a novel graph kernel framework inspired the by the Weisfeiler-Lehman (WL) isomorphism tests. Any WL test comprises a relabelling phase of the nodes based on test-specific information extracted from the graph, for example the set of neighbours of a node. We defined a novel relabelling and derived two kernels of the framework from it. The novel kernels are very fast to compute and achieve state-of-the-art results on five real-world datasets.
引用
收藏
页码:93 / 100
页数:8
相关论文
共 34 条
  • [1] Weisfeiler-Lehman Graph Kernels
    Shervashidze, Nino
    Schweitzer, Pascal
    van Leeuwen, Erik Jan
    Mehlhorn, Kurt
    Borgwardt, Karsten M.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2011, 12 : 2539 - 2561
  • [2] Weisfeiler-Lehman graph kernels
    Machine Learning and Computational Biology Research Group, Max Planck Institutes Tubingen, Spemannstr. 38, 72076 Tübingen, Germany
    不详
    不详
    不详
    J. Mach. Learn. Res., (2539-2561):
  • [3] Wasserstein Weisfeiler-Lehman Graph Kernels
    Togninalli, Matteo
    Ghisu, Elisabetta
    Llinares-Lopez, Felipe
    Rieck, Bastian
    Borgwardt, Karsten
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [4] A generalized Weisfeiler-Lehman graph kernel
    Schulz, Till Hendrik
    Horvath, Tamas
    Welke, Pascal
    Wrobel, Stefan
    MACHINE LEARNING, 2022, 111 (07) : 2601 - 2629
  • [5] A generalized Weisfeiler-Lehman graph kernel
    Till Hendrik Schulz
    Tamás Horváth
    Pascal Welke
    Stefan Wrobel
    Machine Learning, 2022, 111 : 2601 - 2629
  • [6] Learning subtree pattern importance for Weisfeiler-Lehman based graph kernels
    Dai Hai Nguyen
    Canh Hao Nguyen
    Hiroshi Mamitsuka
    Machine Learning, 2021, 110 : 1585 - 1607
  • [7] Learning subtree pattern importance for Weisfeiler-Lehman based graph kernels
    Dai Hai Nguyen
    Canh Hao Nguyen
    Mamitsuka, Hiroshi
    MACHINE LEARNING, 2021, 110 (07) : 1585 - 1607
  • [8] Gaussian process regression with Sliced Wasserstein Weisfeiler-Lehman graph kernels
    Perez, Raphael Carpintero
    Da Veiga, Sebastien
    Garnier, Josselin
    Staber, Brian
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 238, 2024, 238
  • [9] A Persistent Weisfeiler-Lehman Procedure for Graph Classification
    Rieck, Bastian
    Bock, Christian
    Borgwardt, Karsten
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [10] The pyramid quantized Weisfeiler-Lehman graph representation
    Gkirtzou, Katerina
    Blaschko, Matthew B.
    NEUROCOMPUTING, 2016, 173 : 1495 - 1507