Symmetric results of a Henon type elliptic equation

被引:2
|
作者
Lou, Zhenluo [1 ]
Xu, Jiafa [2 ]
机构
[1] Henan Univ Sci & Technol, Sch Math & Stat, Luoyang 471023, Peoples R China
[2] Chongqing Normal Univ, Sch Math Sci, Chongqing 401131, Peoples R China
基金
中国国家自然科学基金;
关键词
Elliptic system; Variational method; Ground state solutions; Symmetric results; GROUND-STATE SOLUTIONS; LEAST ENERGY SOLUTIONS; EMDEN-FOWLER EQUATION; POSITIVE SOLUTIONS; DIRICHLET PROBLEM; EXISTENCE; NONEXISTENCE; UNIQUENESS; SYSTEMS;
D O I
10.1016/j.aml.2019.04.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the following weighted elliptic system {-Delta u + u = lambda 1 vertical bar x vertical bar(alpha)u(3) + mu vertical bar x vertical bar(beta)uv(2), x is an element of B, -Delta v + v = lambda(2)vertical bar x vertical bar(alpha)v(3) + mu vertical bar x vertical bar(beta)u(2)v, x is an element of B, where B C R-N(N = 2,3) is the unit ball centered at the origin, lambda(1), lambda(2) > 0, mu > 0, beta > 0, alpha > 0. By virtue of variational approaches and resealing methods, the system has a nontrivial ground state solution with alpha > beta > 0, moreover, by reduction methods, the ground state solution is radial symmetry if beta > 0 small enough. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:54 / 60
页数:7
相关论文
共 50 条