DYNAMICS OF NON-AUTONOMOUS REACTION-DIFFUSION EQUATIONS IN LOCALLY UNIFORM SPACES

被引:0
|
作者
Yue, Gaocheng [1 ]
Zhong, Chengkui [2 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Dept Math, Nanjing 211106, Jiangsu, Peoples R China
[2] Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
关键词
Reaction-diffusion equations; uniform attractors; locally uniform spaces; EVOLUTION-EQUATIONS; GLOBAL ATTRACTORS; WAVE-EQUATIONS; EXISTENCE; SEMIGROUPS; SYSTEMS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we first prove the well-posedness for the non autonomous reaction-diffusion equations on the entire space RN in the setting of locally uniform spaces with singular initial data. Then we study the asymptotic behavior of solutions of such equation and show the existence of (H-U(1,q)(R-N), H-phi(1,q)(R-N))-uniform(w.r.t. g is an element of H-LUq(R())N (g0)) attractor A(HLUq)(R-N)(g0) with locally uniform external forces being translation uniform bounded but not translation compact in L-b(p)(R; L-U(q)(R-N)). We also obtain the uniform attracting property in the stronger topology.
引用
收藏
页码:935 / 965
页数:31
相关论文
共 50 条
  • [1] ATTRACTORS FOR NON-AUTONOMOUS REACTION-DIFFUSION EQUATIONS WITH FRACTIONAL DIFFUSION IN LOCALLY UNIFORM SPACES
    Yue, Gaocheng
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2017, 22 (04): : 1645 - 1671
  • [2] Uniform attractors for the non-autonomous reaction-diffusion equations with delays
    Zhu, Kaixuan
    Xie, Yongqin
    Zhou, Feng
    Li, Xin
    ASYMPTOTIC ANALYSIS, 2021, 123 (3-4) : 263 - 288
  • [3] Dynamics and regularity for non-autonomous reaction-diffusion equations with anomalous diffusion
    Yan, Xingjie
    Wang, Shubin
    Yang, Xin-Guang
    Zhang, Junzhao
    ASYMPTOTIC ANALYSIS, 2023, 132 (3-4) : 495 - 517
  • [4] Attractors of non-autonomous reaction-diffusion equations
    Song, Haitao
    Ma, Shan
    Zhong, Chengkui
    NONLINEARITY, 2009, 22 (03) : 667 - 681
  • [5] The existence of uniform attractors for non-autonomous reaction-diffusion equations on the whole space
    Xie, Yongqin
    Zhu, Kaixuan
    Sun, Chunyou
    JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (08)
  • [6] Attractors of non-autonomous reaction-diffusion equations in Lp
    Song, Haitao
    Zhong, Chengkui
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (07) : 1890 - 1897
  • [7] Uniform trajectory attractor for non-autonomous reaction-diffusion equations with Caratheodory's nonlinearity
    Gorban, Nataliia V.
    Kapustyan, Oleksiy V.
    Kasyanov, Pavlo O.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 98 : 13 - 26
  • [8] ASYMPTOTIC DYNAMICS OF NON-AUTONOMOUS FRACTIONAL REACTION-DIFFUSION EQUATIONS ON BOUNDED DOMAINS
    Li, Xin
    Shen, Wenxian
    Sun, Chunyou
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2020, 55 (01) : 105 - 139
  • [9] NON-AUTONOMOUS REACTION-DIFFUSION EQUATIONS WITH VARIABLE EXPONENTS AND LARGE DIFFUSION
    Fernandes, Antonio Carlos
    Goncalves, Marcela Carvalho
    Simsen, Jacson
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (04): : 1485 - 1510
  • [10] Nonclassical Symmetry Solutions for Non-Autonomous Reaction-Diffusion Equations
    Bradshaw-Hajek, Bronwyn H.
    SYMMETRY-BASEL, 2019, 11 (02):