Experimental investigation of effusion and transpiration air cooling for single turbine blade

被引:44
|
作者
Kim, Mingeon [1 ]
Shin, Dong Hwan [2 ]
Kim, Jin Sub [2 ]
Lee, Bong Jae [1 ]
Lee, Jungho [2 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Mech Engn, 291 Daehak Ro, Daejeon 34141, South Korea
[2] Korea Inst Machinery & Mat, Dept Energy Convers Syst, 156 Gajeongbuk Ro, Daejeon 34103, South Korea
关键词
Effusion cooling; Transpiration cooling; Air Cooling; Internal cooling; Infrared thermometry; Gas turbine; HEAT-TRANSFER; INJECTION; HOLES; FLOW; ROW;
D O I
10.1016/j.applthermaleng.2020.116156
中图分类号
O414.1 [热力学];
学科分类号
摘要
A great number of studies have been conducted on a film cooling for turbine blades, which is to prevent thermal damage on blades originated from high turbine inlet temperature. However, film cooling with several rows of cooling-holes results in lifting-off of coolant film and limited cooling on a restricted area due to flow reattachment. In this study, effusion and transpiration cooling were applied to the single C3X blade. A multiple hole-array with a diameter of 0.5 mm was fabricated by the electric discharging machining, and a porous structure with an equivalent pore diameter of 40 mu m was manufactured by the 3-D metal additive manufacturing. Experiments were performed in the high-temperature subsonic wind tunnel, which has a free-stream temperature of 100 degrees C and a velocity of 20 m/s. The surface temperature of blades was measured using infrared thermometry with a specially designed protocol to eliminate background radiation errors from the surroundings. Also, the outflow of coolant from blades was investigated with smoke-laser sheet visualization. The overall cooling effectiveness was quantitatively analyzed on the pressure-side, suction-side, and leading-edge of blades. Due to the enhancement of convective cooling through porous media, transpiration cooling achieves 34% and 25% higher cooling effectiveness than effusion and internal cooling each.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Flow characterization of microscale effusion and transpiration air cooling on single blade
    Kim, Mingeon
    Shin, Dong Hwan
    Lee, Bong Jae
    Lee, Jungho
    CASE STUDIES IN THERMAL ENGINEERING, 2022, 31
  • [2] EXPERIMENTAL INVESTIGATION OF EFFECTS OF TRANSPIRATION COOLING ON TURBINE STATOR BLADE AERODYNAMICS
    PROVENZA.GE
    THIRUMAL.SN
    MECHANICAL ENGINEERING, 1969, 91 (07) : 64 - &
  • [3] Experimental and numerical investigation of micro-scale effusion and transpiration air cooling on cascaded turbine blades
    Kim, Mingeon
    Shin, Dong Hwan
    Lee, Bong Jae
    Lee, Jungho
    CASE STUDIES IN THERMAL ENGINEERING, 2022, 32
  • [4] Experimental and Numerical Investigation on Steam/Air Cooling Performance of a Turbine Blade
    Ma C.
    Ge B.
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2020, 40 (16): : 5264 - 5273
  • [5] Numerical and experimental investigation of turbine blade film cooling
    Berkache, Amar
    Dizene, Rabah
    HEAT AND MASS TRANSFER, 2017, 53 (12) : 3443 - 3458
  • [6] Numerical and experimental investigation of turbine blade film cooling
    Amar Berkache
    Rabah Dizene
    Heat and Mass Transfer, 2017, 53 : 3443 - 3458
  • [7] EXPERIMENTAL INVESTIGATION OF FILM COOLING ON A TURBINE ROTOR BLADE
    DRING, RP
    BLAIR, MF
    JOSLYN, HD
    JOURNAL OF ENGINEERING FOR POWER-TRANSACTIONS OF THE ASME, 1980, 102 (01): : 81 - 87
  • [8] Experimental Investigation on Integrated Cooling Efficiency of Turbine Blade
    涡轮叶片综合冷却效率实验研究
    Yang, Wei-Hua (yangwh-sjtu@163.com), 1600, Journal of Propulsion Technology (42): : 335 - 343
  • [9] An Experimental Investigation of Showerhead Film Cooling Performance on a Turbine Blade
    Zhu Xingdan
    Zhang Jingzhou
    Tan Xiaoming
    2014 ASIA-PACIFIC INTERNATIONAL SYMPOSIUM ON AEROSPACE TECHNOLOGY, APISAT2014, 2015, 99 : 634 - 645
  • [10] Experimental investigation of aerodynamics of turbine blade trailing edge cooling
    SUN DaweiQIAO WeiyangDONG KangtianXU KaifuSchool of Power and EnergyNorthwestern Polytechnical UniversityXian ChinaXian Thermal Power Research InstituteXian China
    航空动力学报, 2010, (05) : 1097 - 1102