Construction of Neural Network-Based Prediction Intervals for Short-Term Electrical Load Forecasting

被引:0
|
作者
Quan, Hao [1 ]
Srinivasan, Dipti [1 ]
Khosravi, Abbas [2 ]
Nahavandi, Saeid [2 ]
Creighton, Doug [2 ]
机构
[1] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 117548, Singapore
[2] Deakin Univ, Ctr Intelligent Syst Res, Geelong, Vic 3217, Australia
基金
澳大利亚研究理事会;
关键词
CONFIDENCE;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Short-term load forecasting (STU) is of great importance for control and scheduling of electrical power systems. The uncertainty of power systems increases due to the random nature of climate and the penetration of the renewable energies such as wind and solar power. Traditional methods for generating point forecasts of load demands cannot properly handle uncertainties in datasets. To quantify these potential uncertainties associated with forecasts, this paper implements a neural network (NN)-based method for construction of prediction intervals (PIs). A newly proposed method, called lower upper bound estimation (LURE), is applied to develop Pis using NN models. The primary multi-objective problem is firstly transformed into a constrained single-objective problem. This new problem formulation is closer to the original problem and has fewer parameters than the cost function. Particle swarm optimization (PSO) integrated with the mutation operator is used to solve the problem. Two case studies from Singapore and New South Wales (Australia) historical load datasets are used to validate the PSO-based LUBE method. Demonstrated results show that the proposed method can construct high quality PIs for load forecasting applications.
引用
收藏
页码:66 / 72
页数:7
相关论文
共 50 条
  • [1] Short-Term Load and Wind Power Forecasting Using Neural Network-Based Prediction Intervals
    Quan, Hao
    Srinivasan, Dipti
    Khosravi, Abbas
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2014, 25 (02) : 303 - 315
  • [2] Confidence intervals for neural network-based short-term electric load forecasting
    Moulin, L.S.
    Alves da Silva, A.P.
    IEEE Power Engineering Review, 2000, 20 (05):
  • [3] Confidence intervals for neural network based short-term load forecasting
    da Silva, AP
    Moulin, LS
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2000, 15 (04) : 1191 - 1196
  • [4] Temporal Convolution Network-Based Short-Term Electrical Load Forecasting
    Zhao Y.
    Wang H.
    Kang L.
    Zhang Z.
    Diangong Jishu Xuebao/Transactions of China Electrotechnical Society, 2022, 37 (05): : 1242 - 1251
  • [5] Uncertainty handling using neural network-based prediction intervals for electrical load forecasting
    Quan, Hao
    Srinivasan, Dipti
    Khosravi, Abbas
    ENERGY, 2014, 73 : 916 - 925
  • [6] Neural Network-based Load Forecasting and Error Implication for Short-term Horizon
    Khuntia, S. R.
    Rueda, J. L.
    van der Meijden, M. A. M. M.
    2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 4970 - 4975
  • [7] Graph Neural Network-Based Short-Term Load Forecasting with Temporal Convolution
    Sun, Chenchen
    Ning, Yan
    Shen, Derong
    Nie, Tiezheng
    DATA SCIENCE AND ENGINEERING, 2024, 9 (02) : 113 - 132
  • [8] Linear and Neural Network-based Models for Short-Term Heat Load Forecasting
    Potocnik, Primoz
    Strmcnik, Ervin
    Govekar, Edvard
    STROJNISKI VESTNIK-JOURNAL OF MECHANICAL ENGINEERING, 2015, 61 (09): : 543 - 550
  • [9] NEURAL NETWORK BASED SHORT-TERM LOAD FORECASTING
    LU, CN
    WU, HT
    VEMURI, S
    IEEE TRANSACTIONS ON POWER SYSTEMS, 1993, 8 (01) : 336 - 342
  • [10] Short-Term Load Forecasting Based on RBF Neural Network
    Zhao, Bing
    Liang, Yue
    Gao, Xin
    Liu, Xin
    3RD ANNUAL INTERNATIONAL CONFERENCE ON INFORMATION SYSTEM AND ARTIFICIAL INTELLIGENCE (ISAI2018), 2018, 1069