Spatio-temporal assessment of inland surface water quality using remote sensing data in the wake of changing climate

被引:13
|
作者
Malahlela, Oupa E. [1 ]
机构
[1] SANSA, Earth Observat Div, ZA-0184 Pretoria, South Africa
关键词
CHLOROPHYLL-A CONCENTRATION;
D O I
10.1088/1755-1315/227/6/062012
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Remote sensing indices have been widely used for mapping water quality parameters such as the suspended material and chlorophyll-a concentration. This study aims at investigating the spatio-temporal performance of spectral indices for mapping suspended sediments in water using Landsat 8 data. The results show that the normalized suspended material index (NSMI) is the most effective index for multi-temporal mapping of suspended solids. The use of other spectral indices in the visible to shortwave infrared also offers reasonable estimation (R-2 > 0.7; p< 0.05) of water quality parameters. It is recommended that the performance of the tested indices be compared with other indices derived from high resolution data such as the Ziyuan-3 and Sentinel-2 satellites for operational monitoring of inland water bodies.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] SPATIO-TEMPORAL DYNAMICS OF SURFACE WETNESS CONDITIONS USING REMOTE SENSING DATA
    Akther, M. Shammi
    Hassan, Quazi K.
    2010 CANADIAN GEOMATICS CONFERENCE AND SYMPOSIUM OF COMMISSION I, ISPRS CONVERGENCE IN GEOMATICS - SHAPING CANADA'S COMPETITIVE LANDSCAPE, 2010, 38
  • [2] Spatio-Temporal Assessment of Surface Moisture and Evapotranspiration Variability Using Remote Sensing Techniques
    Le, Mai Son
    Liou, Yuei-An
    REMOTE SENSING, 2021, 13 (09)
  • [3] Spatio-Temporal Dynamics Assessment of Coastlines Based on Remote Sensing Data
    Otinar, Pedro
    Silva, Marcus
    Cobos, Manuel
    Magana, Pedro
    Baquerizo, Asuncion
    PROCEEDINGS OF THE 39TH IAHR WORLD CONGRESS, 2022, : 5917 - 5925
  • [4] Using MODIS remote sensing data for mapping the spatio-temporal variability of water quality and river turbid plume
    Sajad Ahmad Hamidi
    Hossein Hosseiny
    Nima Ekhtari
    Bahram Khazaei
    Journal of Coastal Conservation, 2017, 21 : 939 - 950
  • [5] Using MODIS remote sensing data for mapping the spatio-temporal variability of water quality and river turbid plume
    Hamidi, Sajad Ahmad
    Hosseiny, Hossein
    Ekhtari, Nima
    Khazaei, Bahram
    JOURNAL OF COASTAL CONSERVATION, 2017, 21 (06) : 939 - 950
  • [6] Spatio-temporal interpolation of Sea Surface Temperature using high resolution remote sensing data
    Lguensat, Redouane
    Tandeo, Pierre
    Fablet, Ronan
    Garello, Rene
    2014 OCEANS - ST. JOHN'S, 2014,
  • [7] Effective spatio-temporal analysis of remote sensing data
    Zhang, Zhongnan
    Wu, Weili
    Huang, Yaochun
    PROGRESS IN WWW RESEARCH AND DEVELOPMENT, PROCEEDINGS, 2008, 4976 : 584 - 589
  • [8] Spatio-Temporal Water Hyacinth Monitoring in the Lower Mondego (Portugal) Using Remote Sensing Data
    Padua, Luis
    Duarte, Lia
    Antao-Geraldes, Ana M.
    Sousa, Joaquim J.
    Castro, Joao Paulo
    PLANTS-BASEL, 2022, 11 (24):
  • [9] Remote sensing and machine learning based framework for the assessment of spatio-temporal water quality in the Middle Ganga Basin
    Ashwitha Krishnaraj
    Ramesh Honnasiddaiah
    Environmental Science and Pollution Research, 2022, 29 : 64939 - 64958
  • [10] Remote sensing and machine learning based framework for the assessment of spatio-temporal water quality in the Middle Ganga Basin
    Krishnaraj, Ashwitha
    Honnasiddaiah, Ramesh
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2022, 29 (43) : 64939 - 64958