Sharpening P-spline signal regression

被引:6
|
作者
Li, Bin [1 ]
Marx, Brian D. [1 ]
机构
[1] Louisiana State Univ, Dept Expt Stat, Baton Rouge, LA 70803 USA
关键词
multivariate calibration; P-splines; partial least squares;
D O I
10.1177/1471082X0800800403
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose two variations of P-spline signal regression: space-varying penalization signal regression (SPSR) and additive polynomial signal regression (APSR). SPSR uses space-varying roughness penalty according to the estimated coefficients from the partial least-squares (PLS) regression, while APSR expands the linear basis to polynomial bases. SPSR and APSR are motivated in the following two scenarios, respectively: (i) some region(s) of the regressor channels contain more useful information for prediction than others and (ii) the relationship between the response and regressor channels is highly nonlinear. We also extend the methods to the generalized linear regression setting. As illustration, we apply the methods to two published data sets showing highly competitive performance.
引用
收藏
页码:367 / 383
页数:17
相关论文
共 50 条
  • [1] Multivariate Calibration for Spectral Analysis Based on P-Spline Signal Regression with Net Analyte Signal
    Zhang, Xiaoyu
    Li, Qingbo
    Zhang, Guangjun
    SPECTROSCOPY, 2013, 28 (04) : 40 - 47
  • [2] P-spline curves
    Wang, Zhihao
    Li, Yajuan
    Xu, Huixia
    Liu, Jianzhen
    Deng, Chongyang
    VISUAL COMPUTER, 2023, 39 (10): : 4697 - 4707
  • [3] P-spline curves
    Zhihao Wang
    Yajuan Li
    Huixia Xu
    Jianzhen Liu
    Chongyang Deng
    The Visual Computer, 2023, 39 : 4697 - 4707
  • [4] Generalized linear regression on sampled signals and curves:: A P-spline approach
    Marx, BD
    Eilers, PHC
    TECHNOMETRICS, 1999, 41 (01) : 1 - 13
  • [5] Modeling with curves and p-spline surfaces
    Morigi, S
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1998, 1A : 197 - 200
  • [6] Spatially Regularized Shape Analysis of the Hippocampus Using P-Spline Based Shape Regression
    Achterberg, Hakim Christiaan
    de Rooi, Johan J.
    Vernooij, Meike W.
    Ikram, M. Arfan
    Niessen, Wiro J.
    Eilers, Paul H. C.
    de Bruijne, Marleen
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2020, 24 (03) : 825 - 834
  • [7] Image Interpolation using adaptive P-spline
    Nayak, Rajashree
    Patra, Dipti
    2015 ANNUAL IEEE INDIA CONFERENCE (INDICON), 2015,
  • [8] An additive penalty P-Spline approach to derivative estimation
    Simpkin, Andrew
    Newell, John
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2013, 68 : 30 - 43
  • [9] P-spline smoothing for spatial data collected worldwide
    Greco, Fedele
    Ventrucci, Massimo
    Castelli, Elisa
    SPATIAL STATISTICS, 2018, 27 : 1 - 17
  • [10] A note on P-spline additive models with correlated errors
    Durbán, M
    Currie, ID
    COMPUTATIONAL STATISTICS, 2003, 18 (02) : 251 - 262