Rough singular integrals associated with surfaces of Van der Corput type

被引:0
|
作者
Liu Feng [1 ]
Wu Huo-xiong [1 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
基金
中国国家自然科学基金;
关键词
Singular integrals; surfaces of Van der Corput type; maximal operators; Littlewood-Paley theory; Fourier transform estimates; L-P BOUNDS; MAXIMAL FUNCTIONS; OPERATORS; KERNELS;
D O I
10.1007/s11766-014-3149-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the authors establish the L (p) -mapping properties for a class of singular integrals along surfaces in a"e (n) of the form {I center dot(|u|)u': u a a"e (n) } as well as the related maximal operators provided that the function I center dot satisfies certain oscillatory integral estimates of Van der Corput type, and the integral kernels are given by the radial function {ie86-1} for gamma > 1 and the sphere function {ie86-2} for some beta > 0, which is distinct from H (1)(S (n-1)).
引用
收藏
页码:86 / 100
页数:15
相关论文
共 50 条