Adjoint-Based Functional Correction for Unstructured Mesh Finite Volume Methods

被引:6
|
作者
Sharbatdar, Mahkame [1 ]
Ollivier-Gooch, Carl [1 ]
机构
[1] Univ British Columbia, Dept Mech Engn, Vancouver, BC V6T 1Z4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Adjoint-based functional correction; Adjoint-based mesh adaptation; Finite volume method; Unstructured mesh; Truncation error estimation; ERROR ESTIMATION; GRID ADAPTATION; OUTPUTS; SCHEMES;
D O I
10.1007/s10915-017-0611-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The goal of this paper is to demonstrate the use of adjoint-based functional correction and mesh adaptation for aerodynamic flows with an unstructured mesh finite volume solver. A key feature of our approach is that all calculations are performed on a single mesh, unlike other error correction and mesh adaptation schemes. As using the original p-truncation error estimate is not helpful in improving the functional, we use a smoothed estimate of the truncation error to correct the functional for both inviscid and viscous flows. The correction term is based on the smoothed truncation error and the adjoint solution, with both the continuous and discrete adjoints. The same correction term is used as an adaptation indicator for goal-based mesh adaptation as well. Our results show the effectiveness of our method in improving the convergence rate for test cases of interest in computational aerodynamics.
引用
收藏
页码:1 / 23
页数:23
相关论文
共 50 条
  • [1] Adjoint-Based Functional Correction for Unstructured Mesh Finite Volume Methods
    Mahkame Sharbatdar
    Carl Ollivier-Gooch
    Journal of Scientific Computing, 2018, 76 : 1 - 23
  • [2] Smoothed truncation error in functional error estimation and correction using adjoint methods in an unstructured finite volume solver
    Sharbatdar, Mahkame
    Jalali, Alireza
    Ollivier-Gooch, Carl
    COMPUTERS & FLUIDS, 2016, 140 : 406 - 421
  • [3] A modified adjoint-based grid adaptation and error correction method for unstructured grid
    Cui, Pengcheng
    Li, Bin
    Tang, Jing
    Chen, Jiangtao
    Deng, Youqi
    MODERN PHYSICS LETTERS B, 2018, 32 (12-13):
  • [4] Adjoint-based error estimation and mesh adaptation for stabilized finite deformation elasticity
    Granzow, Brian N.
    Oberai, Assad A.
    Shephard, Mark S.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2018, 337 : 263 - 280
  • [5] Adjoint-based aerodynamic shape optimization on unstructured meshes
    Carpentieri, G.
    Koren, B.
    van Tooren, M. J. L.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 224 (01) : 267 - 287
  • [6] ADJOINT-BASED OUTPUT FUNCTIONAL ERROR ESTIMATION AND GRID ADAPTIVE MESH REFINEMENT
    Yang Zhenhu
    Zhou Lei
    Liang Yihua
    Niu Junqiang
    2011 INTERNATIONAL CONFERENCE ON COMPUTER AND COMPUTATIONAL INTELLIGENCE (ICCCI 2011), 2012, : 51 - 58
  • [7] Adjoint-based error estimation and mesh adaptation for hybridized discontinuous Galerkin methods
    Woopen, M.
    May, G.
    Schuetz, J.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2014, 76 (11) : 811 - 834
  • [8] Unstructured mesh finite volume LBM
    Su, Xiao-Hui
    Liu, Yan
    Zhang, Kai-Lin
    Zhao, Yong
    Wang, Wei
    Xie, Rong
    Zhao, Guang
    Dalian Ligong Daxue Xuebao/Journal of Dalian University of Technology, 2012, 52 (06): : 809 - 815
  • [9] APPROACHES FOR ADJOINT-BASED A POSTERIORI ANALYSIS OF STABILIZED FINITE ELEMENT METHODS
    Cyr, Eric C.
    Shadid, John
    Wildey, Tim
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2014, 36 (02): : A766 - A791
  • [10] Adjoint-based error estimation and mesh adaptation for the correction procedure via reconstruction method
    Shi, Lei
    Wang, Z. J.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 295 : 261 - 284