Structure and functional interactions of INO80 actin/Arp module

被引:20
|
作者
Zhang, Xuan [1 ,2 ]
Wang, Xuejuan [1 ,2 ]
Zhang, Zhihui [1 ,2 ]
Cai, Gang [1 ,2 ,3 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, Sch Life Sci, Hefei 230026, Anhui, Peoples R China
[3] Chinese Acad Sci, CAS Ctr Excellence Mol Cell Sci, Hefei 230026, Peoples R China
基金
中国国家自然科学基金;
关键词
INO80; nuclear actin/Arp module; modular architecture; actin/Arp-Nuc207; assembly; SACCHAROMYCES-CEREVISIAE; CHROMATIN REMODELER; CRYSTAL-STRUCTURE; PROTEINS; COMPLEX; PARTICLE; CORE; VISUALIZATION; ARCHITECTURE; HISTONES;
D O I
10.1093/jmcb/mjy062
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The presence and functions of nuclear actin have been controversial due to the lack of molecular mechanisms. Nuclear actin and actin-related proteins (Arps) are subunits of several chromatin remodelers, including the evolutionarily conserved INO80 chromatin-remodeling complex. Here, we present an improved cryo-EM structure of the yeast INO80 complex and the first 3D reconstruction of the INO80 actin/Arp module. The modular and subunit architecture is defined using a combination of subunit deletion analysis and published crosslinking-mass spectrometry. The functional interactions of the INO80 actin/Arp module with a nucleosome is 3D EM reconstructed in two different binding states. Nucleosomes initially bind to the Arp8 subunit and the substantial conformational changes maximize nucleosome contacts of the actin/Arp module, which could promote the bound nucleosome to be engaged onto the INO80 ATPase domain. Our findings suggest that the conserved nuclear actin/Arp module acts a conformational switch of the INO80 for nucleosome binding.
引用
收藏
页码:345 / 355
页数:11
相关论文
共 50 条
  • [1] The nuclear actin-containing Arp8 module is a linker DNA sensor driving INO80 chromatin remodeling
    Knoll K.R.
    Eustermann S.
    Niebauer V.
    Oberbeckmann E.
    Stoehr G.
    Schall K.
    Tosi A.
    Schwarz M.
    Buchfellner A.
    Korber P.
    Hopfner K.-P.
    Nature Structural & Molecular Biology, 2018, 25 (9) : 823 - 832
  • [2] Monomeric actin required for INO80 remodeling
    Blaine Bartholomew
    Nature Structural & Molecular Biology, 2013, 20 : 405 - 407
  • [3] Nuclear actin switch of the INO80 remodeler
    Wu, Jun
    Lao, Yimin
    Li, Bing
    JOURNAL OF MOLECULAR CELL BIOLOGY, 2019, 11 (05) : 343 - 344
  • [4] Monomeric actin required for INO80 remodeling
    Bartholomew, Blaine
    NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2013, 20 (04) : 405 - 407
  • [5] The Arp8 and Arp4 module acts as a DNA sensor controlling INO80 chromatin remodeling
    Brahma, Sandipan
    Ngubo, Mzwanele
    Paul, Somnath
    Udugama, Maheshi
    Bartholomew, Blaine
    NATURE COMMUNICATIONS, 2018, 9
  • [6] The Arp8 and Arp4 module acts as a DNA sensor controlling INO80 chromatin remodeling
    Sandipan Brahma
    Mzwanele Ngubo
    Somnath Paul
    Maheshi Udugama
    Blaine Bartholomew
    Nature Communications, 9
  • [7] The functional diversity of Drosophila Ino80 in development
    Ghasemi, Mohsen
    Pawar, Hema
    Mishra, Rakesh K.
    Brahmachari, Vani
    MECHANISMS OF DEVELOPMENT, 2015, 138 : 113 - 121
  • [8] Interactions between the nucleosome histone core and Arp8 in the INO80 chromatin remodeling complex
    Saravanan, Matheshwaran
    Wuerges, Jochen
    Bose, Daniel
    McCormack, Elizabeth A.
    Cook, Nicola J.
    Zhang, Xiaodong
    Wigley, Dale B.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (51) : 20883 - 20888
  • [9] Evidence for monomeric actin function in INO80 chromatin remodeling
    Prabodh Kapoor
    Mingming Chen
    Duane David Winkler
    Karolin Luger
    Xuetong Shen
    Nature Structural & Molecular Biology, 2013, 20 : 426 - 432
  • [10] Evidence for monomeric actin function in INO80 chromatin remodeling
    Kapoor, Prabodh
    Chen, Mingming
    Winkler, Duane David
    Luger, Karolin
    Shen, Xuetong
    NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2013, 20 (04) : 426 - +