Optimum design-based ratio estimators of the distribution function

被引:9
|
作者
Munoz, J. F. [1 ]
Alvarez, E. [2 ]
Rueda, M. [3 ]
机构
[1] Univ Granada, Dept Quantitat Methods Econ & Business, E-18071 Granada, Spain
[2] Polytech Univ Cartagena, Ctr Univ Def, Murcia 30720, Spain
[3] Univ Granada, Dept Stat & OR, E-18071 Granada, Spain
关键词
auxiliary information; variance; quantile; low income proportion; inclusion probability; POPULATION-DISTRIBUTION FUNCTION; AUXILIARY INFORMATION; MEDIAN ESTIMATION; QUANTILES;
D O I
10.1080/02664763.2013.870983
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The ratio method is commonly used to the estimation of means and totals. This method was extended to the problem of estimating the distribution function. An alternative ratio estimator of the distribution function is defined. A result that compares the variances of the aforementioned ratio estimators is used to define optimum design-based ratio estimators of the distribution function. Different empirical results indicate that the optimum ratio estimators can be more efficient than alternative ratio estimators. In addition, we show by simulations that alternative ratio estimators can have large biases, whereas biases of the optimum ratio estimators are negligible in this situation.
引用
收藏
页码:1395 / 1407
页数:13
相关论文
共 50 条
  • [1] Design-based estimators of the distribution function in ranked set sampling with an application
    Sevil, Yusuf Can
    Yildiz, Tugba Ozkal
    STATISTICS, 2022, 56 (04) : 891 - 918
  • [2] Design-based confidence limits for a distribution function
    Cordy, CB
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 1997, 26 (04) : 1447 - 1464
  • [3] Design-Based Confidence Limits for a Distribution Function
    Cordy, C. B.
    Communications in Statistics. Part B: Simulation and Computation, 26 (04):
  • [4] Design-Based Ratio Estimators and Central Limit Theorems for Clustered, Blocked RCTs
    Schochet, Peter Z.
    Pashley, Nicole E.
    Miratrix, Luke W.
    Kautz, Tim
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2022, 117 (540) : 2135 - 2146
  • [5] Design-based distribution function estimation for stigmatized populations
    Barabesi, Lucio
    Diana, Giancarlo
    Perri, Pier Francesco
    METRIKA, 2013, 76 (07) : 919 - 935
  • [6] Design-based distribution function estimation for stigmatized populations
    Lucio Barabesi
    Giancarlo Diana
    Pier Francesco Perri
    Metrika, 2013, 76 : 919 - 935
  • [7] Optimal sampling for design-based estimators of regression models
    Chen, Tong
    Lumley, Thomas
    STATISTICS IN MEDICINE, 2022, 41 (08) : 1482 - 1497
  • [8] Evaluating assumptions behind design-based estimators for unreported catches
    Clegg, Thomas L.
    Fuglebakk, Edvin
    Ono, Kotaro
    FISHERIES RESEARCH, 2023, 263
  • [9] Design-based inference on Bernstein type estimators for continuous populations
    Franceschi, Sara
    Marcheselli, Marzia
    Naddeo, Stefania
    Pisani, Caterina
    BIOMETRICAL JOURNAL, 2019, 61 (01) : 166 - 186
  • [10] Optimum ratio estimators for the population proportion
    Francisco Munoz, Juan
    Alvarez, Encarnacion
    Arcos, Antonio
    del Mar Rueda, Maria
    Gonzalez, Silvia
    Santiago, Agustin
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2012, 89 (03) : 357 - 365